Exemple #1
0
def bench_scikit(X, Y):
    """
    bench with scikit-learn bindings on libsvm
    """
    import scikits.learn
    from scikits.learn.svm import SVC

    gc.collect()

    # start time
    tstart = datetime.now()
    clf = SVC(kernel='rbf')
    clf.fit(X, Y).predict(X)
    delta = (datetime.now() - tstart)
    # stop time

    scikit_results.append(delta.seconds + delta.microseconds / mu_second)
Exemple #2
0
def bench_scikit(X, Y):
    """
    bench with scikit-learn bindings on libsvm
    """
    import scikits.learn
    from scikits.learn.svm import SVC

    gc.collect()

    # start time
    tstart = datetime.now()
    clf = SVC(kernel='rbf')
    clf.fit(X, Y).predict(X)
    delta = (datetime.now() - tstart)
    # stop time

    scikit_results.append(delta.seconds + delta.microseconds/mu_second)
def test_SVMModelField():
    X = [[0 ,0],[1, 1]]
    y = [0, 1]

    svm = SVM()
    clf = SVC()
    clf.fit(X,y)
    a1 = clf.predict([[2.,2.]])

    #print clf
    #print a1

    svm.classifier = clf
    svm.save(safe=True)

    s = SVM.objects.first()
    #print s.classifier
    a2 = s.classifier.predict([[2., 2.]])
    #print a2

    assert a1 == a2
<<<<<<< HEAD
rfe = RFE(estimator = SVC(kernel="linear",C=1), n_features = 10, percentage =
0.1)
anova_filter = UnivariateFilter(SelectKBest(k=10), f_classif)
clf = SVC(kernel="linear",C=1)

y_pred_rfe = []
y_pred_univ = []
y_true = []
for train, test in StratifiedKFold(y, 2):
    Xtrain, ytrain, Xtest, ytest = X[train], y[train], X[test], y[test]

    ### Fit and predict rfe
    support = rfe.fit(X[train], y[train]).support_
    y_pred_rfe.append(clf.fit(X[train,support],y[train]).predict(
          X[test,support]))

    ### Fit and predict univariate feature selection
    xr = anova_filter.fit(Xtrain, ytrain).transform(Xtrain)
    y_pred_univ.append(clf.fit(Xtrain[:,anova_filter.support_],ytrain).predict(
          Xtest[:,anova_filter.support_]))
    y_true.append(ytest)

y_pred_univ = np.concatenate(y_pred_univ)
y_true = np.concatenate(y_true)
classif_rate_univ = np.mean(y_pred_univ == y_true) * 100
print "Classification rate univariate: %f" % classif_rate_univ
=======
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features=30, percentage=0.1)
rfe.fit(X, y)
Exemple #5
0
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
from __future__ import division
import os
import logging
import pickle
import numpy as np
from scikits.learn.svm import SVC
from string import punctuation
from operator import itemgetter

logging.basicConfig(level=logging.DEBUG)
lab_train, vec_train, lab_test, vec_test = [
    pickle.load(open(file)) for file in [
        'labels_training.pik', 'vectors_training.pik', 'labels_test.pik',
        'vectors_test.pik'
    ]
]
logging.info("Data loaded")

cat_train = list(set(lab_train))
cat_test = list(set(lab_test))
assert cat_test == cat_train

lab_train = [cat_train.index(l) for l in lab_train]
lab_test = [cat_test.index(l) for l in lab_test]

clf = SVC(kernel='rbf')
clf.fit(vec_train, lab_train)

pickle.dump(clf, open('classifier.pik', 'wb'))
from scikits.learn.svm import SVC
from string import punctuation
from operator import itemgetter

logging.basicConfig(level=logging.DEBUG)
lab_train, vec_train , lab_test, vec_test = [pickle.load(open(file)) 
                                             for file 
                                             in ['labels_training.pik',
                                                 'vectors_training.pik',
                                                 'labels_test.pik',
                                                 'vectors_test.pik']]
logging.info("Data loaded") 

cat_train = list(set(lab_train))
cat_test  = list(set(lab_test))
assert cat_test == cat_train 

lab_train = [cat_train.index(l) for l in lab_train]
lab_test  = [cat_test.index(l) for l in lab_test]

clf = SVC(kernel='rbf')
clf.fit(vec_train, lab_train)

pickle.dump(clf,open('classifier.pik','wb'))






Exemple #7
0
import numpy as np
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
from scikits.learn.svm import SVC
clf = SVC()
clf.fit(X, y)
print clf.predict([[-0.8, -1]])