Exemple #1
0
 def __enter__(self):
     """ Set up the `with` block compatibility.
     """
     from scipy.interpolate import RectBivariateSpline as RBS
     #yy,xx = [sorted(zz) for zz in N.indices(self.lats.shape)]
     yidx,xidx = N.indices(self.lats.shape)
     xx = xidx[0,:]
     yy = yidx[:,0]
     self.lat_RBS = RBS(x=xx,y=yy,z=self.lats)
     self.lon_RBS = RBS(x=xx,y=yy,z=self.lons)
     print("Ready to receive x/y points for interpolation")
     return self
Exemple #2
0
def semb(workspace,**kwargs):
        print ''
        def onclick(e):
                print "(%.2f, %.2f) ," %(e.ydata, e.xdata), 
        vels = kwargs['velocities']
        nvels = vels.size
        ns = kwargs['ns']
        result = np.zeros((nvels,ns),'f')
        loc = np.mean(workspace['cdp'])
        for v in range(nvels):
                panel = workspace.copy()
                kwargs['vels'] = np.ones(kwargs['ns'], 'f') * vels[v]
                nmo(panel, None, **kwargs)
                result[v,:] += np.abs(_stack_gather(panel)['trace'])
        result = result[:,::kwargs['smoother']]
        
        window = 5
        filter = np.ones((window,window), 'f')/(1.0*window**2)
        result = convolve2d(result, filter, boundary='symm', mode='same')

        
        x = vels
        y = np.arange(ns)[::kwargs['smoother']]
        f = RBS(x, y, result, s=0)
        result = f(x, np.arange(ns))
        
        pylab.imshow(result.T, aspect='auto', extent=(min(vels), max(vels),kwargs['ns']*kwargs['dt'],0.), cmap='jet')
        pylab.xlabel('velocity')
        pylab.ylabel('time')
        pylab.title("cdp = %d" %np.unique(loc)) 
        pylab.colorbar()
        fig = pylab.gcf()
        fig.canvas.mpl_connect('button_press_event', onclick)
        print "vels[%d] = " %np.unique(loc), 
        pylab.show()
Exemple #3
0
def get_subpixel(res):
    mgx, mgy = np.meshgrid(np.arange(-1, 1.01, 0.1),
                           np.arange(-1, 1.01, 0.1),
                           indexing='xy')  # sub-pixel mesh

    minval, _, minloc, _ = cv2.minMaxLoc(res)
    rbs_halfsize = 3  # size of peak area used for spline for subpixel peak loc
    rbs_order = 4  # polynomial order for subpixel rbs interpolation of peak location

    if ((np.array([n - rbs_halfsize
                   for n in minloc]) >= np.array([0, 0])).all()
            & (np.array([(n + rbs_halfsize)
                         for n in minloc]) < np.array(list(res.shape))).all()):
        rbs_p = RBS(
            range(-rbs_halfsize, rbs_halfsize + 1),
            range(-rbs_halfsize, rbs_halfsize + 1),
            res[(minloc[1] - rbs_halfsize):(minloc[1] + rbs_halfsize + 1),
                (minloc[0] - rbs_halfsize):(minloc[0] + rbs_halfsize + 1)],
            kx=rbs_order,
            ky=rbs_order)

        b = rbs_p.ev(mgx.flatten(), mgy.flatten())
        mml = cv2.minMaxLoc(b.reshape(21, 21))
        # mgx,mgy: meshgrid x,y of common area
        # sp_delx,sp_dely: subpixel delx,dely
        sp_delx = mgx[mml[3][0], mml[3][1]]
        sp_dely = mgy[mml[3][0], mml[3][1]]
    else:
        sp_delx = 0.0
        sp_dely = 0.0
    return sp_delx, sp_dely
 def __init__(self,
              data,
              lrho,
              le,
              ratios=None,
              indep=None,
              dens_pow=-1,
              fn=None,
              add_var=None):
     super(EOS, self).__init__()
     self.fn = fn
     if ratios is None:
         ratios = np.ones(data.shape[0])
     lr = np.log(ratios)
     self._lr = lr
     if indep is None:
         indep = 'ei'
     self.indep = indep
     self.data = data
     self.lrho = lrho
     self.le = le
     self.dens_pow = dens_pow
     var = ['p', 'e', 'asq_p']
     if add_var is not None:
         var.extend(add_var)
     d = {
         var[i]: RBS(lrho, le + lr[i], np.log10(data[i].T), kx=1, ky=1).ev
         for i in range(len(var))
     }
     self._interp_dict = d
Exemple #5
0
 def __getitem__(self, idx):
     grid = self.data()[idx].values
     # Need to make lat increasing for interpolation
     ip = RBS(self.inlat[::-1], self.inlon, grid[::-1])
     # print("interpolating")
     igrid = ip(self.outlat[::-1], self.outlon)[::-1]
     return igrid
Exemple #6
0
def getSky(fFile):
    from scipy.interpolate import RectBivariateSpline as RBS
    data = fFile[2].data
    sky = data['allsky'][0]
    xi = np.arange(sky.shape[0])
    yi = np.arange(sky.shape[1])
    interp = RBS(xi, yi, sky)
    return interp(data['yinterp'], data['xinterp'])
Exemple #7
0
def RectBivariateSpline(DEM, **kwargs):
    if type(DEM) is not GeoImg:
        raise TypeError('DEM must be a GeoImg')
    X, Y = DEM.xy()
    f = RBS(Y[0:, 0], X[0, 0:], DEM.img)
    out_dem = f.ev(Y, X)  # might have to flip upside-down?

    return DEM.copy(new_raster=out_dem)
Exemple #8
0
    def interp_latlon(self, xcol, yrow):
        #points = (N.indices(self.xx.shape)[0].flat,N.indices(self.yy.shape)[0].flat)
        # clat = scipy.interpolate.griddata(points=(self.xx.flat,self.yy.flat),
        #clat = scipy.interpolate.griddata(points=points,
        #            values=self.lats.flat,xi=(xcol,yrow),method='linear')
        # clon = scipy.interpolate.griddata(points=(self.xx.flat,self.yy.flat),
        #clon = scipy.interpolate.griddata(points=points,
        #            values=self.lons.flat,xi=(xcol,yrow),method='linear')
        #pdb.set_trace()
        if self.rbs is None:
            self.rbs = dict()
            x = N.arange(self.raw_data.shape[0])
            y = N.arange(self.raw_data.shape[1])
            self.rbs['lats'] = RBS(x=x, y=y, z=self.lats)
            self.rbs['lons'] = RBS(x=x, y=y, z=self.lons)

        clat = self.rbs['lats'](yrow, xcol)
        clon = self.rbs['lons'](yrow, xcol)
        return clat, clon
def resample(UV_map, vts):
    h, w, c = UV_map.shape

    vts *= np.array([[h - 1, w - 1]])
    vt_3d = np.zeros((vts.shape[0], 3), dtype=vts.dtype)
    for i in range(c):
        spline_function = RBS(x=np.arange(h),
                              y=np.arange(w),
                              z=UV_map[:, :, i])
        vt_3d[:, i] = spline_function(vts[:, 0], vts[:, 1])
Exemple #10
0
    def scale_field(self, f):
        """
        Scaling of the field according to calculated meshgrid.

        For the interpolation rectangular bivariate Splines are used.
        These are implemented from the scipy function `RectBivariateSpline <https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.html>`_.

        :param f: field to be interpolated
        :returns: field after interpolation
        """
        rbs = RBS(self._tx, self._ty, f)
        return rbs.ev(self._out_x, self._out_y)
Exemple #11
0
    def __init__(self, photons, assume_symmetry=[], binning='auto'):
        self.ndim = 1 + photons.ndim - len(assume_symmetry)
        if binning == 'auto':
            binning = np.linspace(
                0.0, 1.0,
                int((len(photons) * photons.n_steps)**(1.0 /
                                                       (self.ndim + 1.0))) + 1)
        if type(binning) == int:
            binning = np.linspace(0.0, 1.0, binning)
        t = photons.t.flatten()
        x = photons.x.reshape(-1, photons.ndim)
        r = np.linalg.norm(x, axis=-1)
        vals = [t, r]
        self.bins = [binning * np.max(t), binning * np.max(r)]
        self.signature = 'f(t,r'

        if photons.ndim == 2:
            if 'phi' not in assume_symmetry:
                phi = np.arccos(x[:, 0] / r)
                vals.append(phi)
                self.bins.append(binning * 2.0 * np.pi)
                self.signature += ',phi'

        elif photons.ndim == 3:
            if 'theta' not in assume_symmetry:
                theta = np.arccos(x[:, 2] / r)
                vals.append(theta)
                self.bins.append(binning * np.pi)
                self.signature += ',theta'

            if 'phi' not in assume_symmetry:
                phi = np.arctan(x[:, 1], x[:, 0])
                vals.append(phi)
                self.bins.append(2.0 * np.pi * binning - np.pi)
                self.signature += ',phi'

        self.signature += ')'
        self.H, _ = np.histogramdd(vals, self.bins)
        self.t = [(b[1:] + b[:-1]) * 0.5 for b in self.bins]
        if self.ndim == 2:
            self.interpolator = RBS(*self.t,
                                    np.log(self.H + 1e-8),
                                    bbox=[0.0, np.max(t), 0.0,
                                          np.max(r)],
                                    kx=1,
                                    ky=1)
        else:
            self.interpolator_ = RGI(self.t,
                                     self.H,
                                     bounds_error=False,
                                     fill_value=0.0)
            self.interpolator = lambda *x: self.interpolator_(x)
Exemple #12
0
def interpolate_to_wrfgrid(arr,new_shp):
    from scipy.interpolate import RectBivariateSpline as RBS

    old_shp = arr.shape
    xx = N.arange(old_shp[1])
    yy = N.arange(old_shp[0])
    rbs = RBS(xx,yy,arr)

    xx_new = N.arange(new_shp[1])
    yy_new = N.arange(new_shp[0])
    newarr = rbs(xx,yy)
    # pdb.set_trace()
    return newarr
    def load_Gd(self, **kwargs):
        ''' This function loads all the material data to run a Gd materialself.
        The material data is based on the MFT simulations. You can shift the
        properties by setting the shift function or the Tcurie to set the Curie
        temperature.
        '''
        if 'shift' in kwargs:
            shift = kwargs['shift']
        if 'Tcurie' in kwargs:
            shift = kwargs['Tcurie'] - 273
        else:
            shift = 0

        self.name = 'Gd - mft'
        self.density = 7900  # kg/m^3
        self.conductivity = 10.9  # W/mK
        # Specifc Heat
        cp_data = np.loadtxt('./materials/Gd_mft/gdcp_py.txt')
        # Magnetization
        mag_data = np.loadtxt('./materials/Gd_mft/gdmag_py.txt')
        # Entropy
        stot_data = np.loadtxt('./materials/Gd_mft/gdstot_py.txt')
        # Specifc Heat cooling
        HintCp = cp_data[0, 1:]  # Internal Field Values
        TempCp = cp_data[1:, 0] - shift  # # Temperature Values
        # Build interpolation function
        self.mCp = RBS(TempCp, HintCp, cp_data[1:, 1:], ky=1, kx=1)
        # Specifc Heat cooling
        HintMag = mag_data[0, 1:]  # Internal Field Values
        TempMag = mag_data[1:, 0] - shift  # # Temperature Values
        # Build interpolation function
        self.mMag = RBS(TempCp, HintCp, mag_data[1:, 1:], ky=1, kx=1)
        # Specifc Heat cooling
        HintSTot = stot_data[0, 1:]  # Internal Field Values
        TempSTot = stot_data[1:, 0] - shift  # # Temperature Values
        # Build interpolation function
        self.mStot = RBS(TempCp, HintCp, stot_data[1:, 1:], ky=1, kx=1)
Exemple #14
0
 def get_radar_verif(self, utc, datapath):
     RADAR = Radar(utc, datapath)
     Nlim, Elim, Slim, Wlim = self.M['WRFOut'].get_limits()
     wlats = self.M['WRFOut'].lats1D
     wlons = self.M['WRFOut'].lons1D
     data, lats, lons = RADAR.get_subdomain(Nlim, Elim, Slim, Wlim)
     dBZ = RADAR.get_dBZ(data)
     dBZ_flip = N.flipud(dBZ)
     from scipy.interpolate import RectBivariateSpline as RBS
     rbs = RBS(lats[::-1], lons, dBZ_flip)
     dBZ_interp = rbs(
         wlats,
         wlons,
     )  #grid=True)
     # import pdb; pdb.set_trace()
     # fig, ax = plt.subplots(1)
     # ax.imshow(dBZ_interp)
     # ax.invert_yaxis()
     # fig.tight_layout()
     # fig.savefig('/home/jrlawson/public_html/bowecho/hires/SAL/dBZ_output.png')
     return dBZ_interp
Exemple #15
0
def get_subpixel(res, how='min'):
    assert how in ['min', 'max'], "have to choose min or max"

    mgx, mgy = np.meshgrid(np.arange(-1, 1.01, 0.1),
                           np.arange(-1, 1.01, 0.1),
                           indexing='xy')  # sub-pixel mesh

    if how == 'min':
        peakval, _, peakloc, _ = cv2.minMaxLoc(res)
        mml_ind = 2
    else:
        _, peakval, _, peakloc = cv2.minMaxLoc(res)
        mml_ind = 3

    rbs_halfsize = 3  # size of peak area used for spline for subpixel peak loc
    rbs_order = 4  # polynomial order for subpixel rbs interpolation of peak location

    if ((np.array([n - rbs_halfsize
                   for n in peakloc]) >= np.array([0, 0])).all()
            &
        (np.array([(n + rbs_halfsize)
                   for n in peakloc]) < np.array(list(res.shape))).all()):
        rbs_p = RBS(
            range(-rbs_halfsize, rbs_halfsize + 1),
            range(-rbs_halfsize, rbs_halfsize + 1),
            res[(peakloc[1] - rbs_halfsize):(peakloc[1] + rbs_halfsize + 1),
                (peakloc[0] - rbs_halfsize):(peakloc[0] + rbs_halfsize + 1)],
            kx=rbs_order,
            ky=rbs_order)

        b = rbs_p.ev(mgx.flatten(), mgy.flatten())
        mml = cv2.minMaxLoc(b.reshape(21, 21))
        # mgx,mgy: meshgrid x,y of common area
        # sp_delx,sp_dely: subpixel delx,dely
        sp_delx = mgx[mml[mml_ind][0], mml[mml_ind][1]]
        sp_dely = mgy[mml[mml_ind][0], mml[mml_ind][1]]
    else:
        sp_delx = 0.0
        sp_dely = 0.0
    return sp_delx, sp_dely
Exemple #16
0
with open('%s/data/kap_data/lowT_fa05_gs98_%s.data' % (os.environ['MESA_DIR'], key),'r') as f:
    lines = f.readlines()

opac2 = np.loadtxt(lines[7:])[:,1:].T
logT2 = np.loadtxt(lines[7:])[:,0]
logR2 = np.loadtxt(lines[5:6])

Rmin = min(np.min(logR1), np.min(logR2))
Rmax = max(np.max(logR1), np.max(logR2))
Tmin = min(np.min(logT1), np.min(logT2))
Tmax = max(np.max(logT1), np.max(logT2))

i1 = np.where(logT1>=4.)[0][0]
i2 = np.where(logT2<4.)[0][-1]

interpolator1 = RBS(logR1, logT1, opac1)
interpolator2 = RBS(logR2, logT2, opac2)

for rho in np.arange(-10.,0.1,2.):
    T = np.linspace(Tmin, Tmax, 200)
    R = rho - 3.*T + 18.
    T = T[(R>Rmin)&(R<Rmax)]
    R = R[(R>Rmin)&(R<Rmax)]

    # c = np.hstack((interpolator2(R[:i2],T[:i2]), interpolator1(R[i1:],T[i1:])))
    c = [interpolator2(Ri,Ti) for (Ri,Ti) in zip(R,T) if Ti<4.] + \
        [interpolator1(Ri,Ti) for (Ri,Ti) in zip(R,T) if Ti>=4.]
    c = np.squeeze(c)
    pl.plot(T, c, 'k-')

pl.xlabel(r'$\log_{10}(T/\mathrm{K})$')
def interpolate_slice(x, y, Z, NP):
    mod_interp = RBS(x, y, Z)
    interp_vals = mod_interp(np.linspace(x[0], x[-1], NP),
                             np.linspace(y[0], y[-1], NP))
    return interp_vals
Exemple #18
0
y0 = np.linspace(-H/2, H/2, n_y)
X, Y = np.meshgrid(x0, y0)

X0v=[-a for j in np.linspace(-a,a,10)]
Y0v=[j  for j in np.linspace(-a,a,10)]
p0x=[1 for j in X0v]
p0y=[0 for j in Y0v]
U0v=[[X0v[j],p0x[j],Y0v[j],p0y[j]] for j in np.arange(len(X0v))]

FS = 20

for i in range(0, len(t)):
    output = solve_cf(m0,m1,ci).reshape(n_x, n_y)
    ci = solve_cf(m0,m1,ci)
   
    bvspline=RBS(x0,y0,output)

    plt.clf()

    for k in U0v:
        xoutput,youtput=Up(k,500,0.005)
        plt.plot(youtput,-xoutput,'r-',lw=2)
   
    
    plt.rcParams.update({'font.size': FS})
    plt.xlabel("x", fontsize=FS)
    plt.ylabel("y", fontsize=FS)
    
    plt.imshow(output, cmap='Blues', vmin=0, vmax=1, extent=[-H/2,H/2,-W/2,W/2])
    plt.colorbar()
    #plt.xlim(0, W)
Exemple #19
0
 def __init__(self, x, y, z, **kwargs):
     self.__rbs = RBS(x, y, z, **kwargs)
     return
Exemple #20
0
    return (pb.sigma_j(RL, j, 0., **cosmo)[0])**2


dsig1m = n.load('sig1m.npz')
sig1mRl, sig1marr = dsig1m['arr_0'], dsig1m['arr_1']
fs1m = interp1d(sig1mRl, sig1marr,
                kind='cubic')  #interpolated from 0.04 to 100000


def sig1m(RL):
    return fs1m(RL)


dSX = n.load('logSX.npz')
lSXRl, lSXR0, arrSX = dSX['arr_0'], dSX['arr_1'], dSX['arr_2']
fSX = RBS(lSXRl, lSXR0, arrSX)


def SX(RL, R0):
    res = fSX(n.log(RL), n.log(R0))
    if res.size > 1:
        print 'Warning: SX called with array instead of single number'
    return res[0][0]


ds1mX = n.load('logsig1mX.npz')
ls1mXRl, ls1mXR0, arrs1mX = ds1mX['arr_0'], ds1mX['arr_1'], ds1mX['arr_2']
fs1mX = RBS(ls1mXRl, ls1mXR0, arrs1mX)


def sig1mX(RL, R0):
Exemple #21
0
    def __init__(
        self,
        acc_params,
        lag_params,
        acc_model_number,
        lag_model_number,
        errorbar=1.0,
    ):
        """Constructor for the trough object.

        Args:
            acc_params (array like): model parameters for accumulation
            acc_model_number (int): index of the accumulation model
            lag_params (array like): model parameters for lag(t)
            lag_model_number (int): index of the lag(t) model
            errorbar (float): errorbar of the datapoints in pixels; default=1
        """
        # Load in all data
        with pkg_resources.path(__package__, "Insolation.txt") as path:
            insolation, ins_times = np.loadtxt(path, skiprows=1).T
        with pkg_resources.path(__package__, "R_lookuptable.txt") as path:
            retreats = np.loadtxt(path).T
        with pkg_resources.path(__package__, "TMP_xz.txt") as path:
            xdata, ydata = np.loadtxt(path, unpack=True)
            # TODO: remember what this means... lol
            # I'm pretty sure one file has temp data and the other
            # has real data.
            # xdata, ydata = np.loadtxt(here+"/RealXandZ.txt")

        # Trough angle
        self.angle_degrees = 2.9  # degrees
        self.sin_angle = np.sin(self.angle_degrees * np.pi / 180.0)
        self.cos_angle = np.cos(self.angle_degrees * np.pi / 180.0)
        self.csc_angle = 1.0 / self.sin_angle
        self.sec_angle = 1.0 / self.cos_angle
        self.tan_angle = self.sin_angle / self.cos_angle
        self.cot_angle = 1.0 / self.tan_angle
        # Set up the trough model
        self.acc_params = np.array(acc_params)
        self.lag_params = np.array(lag_params)
        self.acc_model_number = acc_model_number
        self.lag_model_number = lag_model_number
        self.errorbar = errorbar
        self.meters_per_pixel = np.array([500.0, 20.0])  # meters per pixel

        # Positive times are now in the past
        ins_times = -ins_times

        # Attach data to this object
        self.insolation = insolation
        self.ins_times = ins_times
        self.retreats = retreats
        self.xdata = xdata * 1000  # meters
        self.ydata = ydata  # meters
        self.Ndata = len(self.xdata)  # number of data points

        # Create splines
        self.lags = np.arange(16) + 1
        self.lags[0] -= 1
        self.lags[-1] = 20
        self.ins_spline = IUS(ins_times, insolation)
        self.iins_spline = self.ins_spline.antiderivative()
        self.ins2_spline = IUS(ins_times, insolation**2)
        self.iins2_spline = self.ins2_spline.antiderivative()
        self.ret_spline = RBS(self.lags, self.ins_times, self.retreats)
        self.re2_spline = RBS(self.lags, self.ins_times, self.retreats**2)

        # Pre-calculate the lags at all times
        self.lags_t = self.get_lag_at_t(self.ins_times)
        self.compute_splines()
Exemple #22
0
            lminInd = list(arglmin).remove(minInd)
            lmin = rhsArray[lminInd]
        elif len(arglmin) == 0:  #all values are the same
            lmin = np.nan
            minInd = 0
        else:
            print(error)
        extremaDict['min'][(i, j, k)] = np.min(rhsArray[k, maxInd])
        extremaDict['lmin'][(i, j, k)] = lmin
        extremaDict['lmax'][(i, j, k)] = lmax
        extremaDict['max'][(i, j, k)] = np.max(rhsArray[k, minInd])
        extremaDict['nu_min'][(i, j, k)] = v[minInd]
        extremaDict['nu_lmin'][(i, j, k)] = v[lminInd]
        extremaDict['nu_lmax'][(i, j, k)] = v[lmaxInd]
        extremaDict['nu_max'][(i, j, k)] = v[maxInd]
    rbsDict[(i, j)] = RBS(e, v, rhsArray)

    #Finds min, max, lmin, lmax of RBS vs nu at specific e

finalMemory = dict(psutil.virtual_memory()._asdict())['used'] / (1024.0**3.)
t1 = time.time()
usedMemory = finalMemory - initMemory
usedTime = t1 - t0

print('For RBS')
print('Memory Used (GB): ' + str(usedMemory) + ' for ' +
      str(len(w) * len(inc) * len(e)) + ' points')
print('Memory Used Per vbs equivalent (MB/cbs): ' +
      str(usedMemory / (len(w) * len(inc) * len(e) * 10.**3.)))
print('Time Used (s): ' + str(usedTime))
print('Time Used Per cbs equivalent (): ' + str(usedTime /
Exemple #23
0
    def __init__(
        self,
        acc_model: Union[str, Model],
        lag_model: Union[str, Model],
        acc_params: Optional[List[float]] = None,
        lag_params: Optional[List[float]] = None,
        tmp: Optional[int] = None,
        errorbar: float = 1.0,
        angle: float = 2.9,
    ):
        """Constructor for the trough object.
        Args:
          acc_params (array like): model parameters for accumulation
          acc_model_name (str): name of the accumulation model
                                (linear, quadratic, etc)
          lag_params (array like): model parameters for lag(t)
          lag_model_name (str): name of the lag(t) model (constant, linear, etc)
          errorbar (float, optional): errorbar of the datapoints in pixels; default=1
          angle (float, optional): south-facing slope angle in degrees. Default is 2.9.
        """

        # Load all data
        retreat_times, retreats, lags = load_retreat_data()
        retreat_times = -retreat_times
        self.angle = angle
        self.errorbar = errorbar
        self.meters_per_pixel = np.array([500.0, 20.0])  # meters per pixel

        # Create submodels
        if isinstance(acc_model, str):  # name of existing model is given
            if "obliquity" in acc_model:
                #load obliquity data and times
                obliquity, obl_times = load_obliquity_data()
                obl_times = -obl_times.astype(float)
                #remove zeros from time array
                condZero = obl_times == 0
                indx = np.array(range(len(condZero)))
                indxZero = indx[condZero]
                obl_times[indxZero] = 1e-10

                acc_time, acc_y = obl_times, obliquity
            else:
                insolation, ins_times = load_insolation_data(tmp)
                ins_times = -ins_times.astype(float)
                #remove zeros from time array
                condZero = ins_times == 0
                indx = np.array(range(len(condZero)))
                indxZero = indx[condZero]
                ins_times[indxZero] = 1e-10

                acc_time, acc_y = ins_times, insolation

            self.accuModel = ACCUMULATION_MODEL_MAP[acc_model](acc_time, acc_y,
                                                               *acc_params)
        else:  # custom model is given
            self.accuModel = acc_model

        # Lag submodel
        assert isinstance(lag_model,
                          (str, Model)), "lag_model must be a string or Model"
        if isinstance(lag_model, str):  # name of existing model is given
            self.lagModel = LAG_MODEL_MAP[lag_model](*lag_params)
        else:  # custom model was given
            self.lagModel = lag_model

        # Call super() with the acc and lag models. This
        # way their parameters are visible here.
        super().__init__(sub_models=[self.accuModel, self.lagModel])

        # Create data splines of retreat of ice (no dependency
        # on model parameters)
        self.ret_data_spline = RBS(lags, retreat_times, retreats)
        self.re2_data_spline = RBS(lags, retreat_times, retreats**2)

        # Calculate the model of retreat of ice per time
        self.lag_at_t = self.lagModel.get_lag_at_t(self.accuModel._times)
        self.retreat_model_t = self.ret_data_spline.ev(self.lag_at_t,
                                                       self.accuModel._times)

        # Compute the Retreat(time) spline
        self.retreat_model_t_spline = IUS(self.accuModel._times,
                                          self.retreat_model_t)
Exemple #24
0
 def apply_s(self,arr_in):
     # Scaling in the vertical
     yy_out = self.yy_in * self.r
     rbs = RBS(yy_out,self.xx_in,arr_in)
     nn = rbs(self.yy_in,self.xx_in)
     return nn.round().astype(int)
Exemple #25
0
 def apply_r(self,arr_in):
     # Scaling in the horizontal
     xx_out = self.xx_in * self.r
     rbs = RBS(self.yy_in,xx_out,arr_in)
     nn = rbs(self.yy_in,self.xx_in)
     return nn.round().astype(int)
def interp_wrap(xc, yc, t_0, X_, u):
    orde = 3

    interp_ = RBS(yc.values, xc.values, u.values[t_0, :, :], kx=orde, ky=orde)
    return interp_.ev(X_[1, :], X_[0, :])
Exemple #27
0
def pppcDM_EWinterp( fname , channel ) :

    #   Load data from PPPC4 tables
    #   The file is in the same
    #   directory as the location of
    #   this script

    #   The function create a grid with
    #   values of dN/dE (no dN/dLog10x)
    #   And the interpolation function
    #   is created using :
    #       - DM candidate mass (in GeV)
    #       - ratio of gamma-ray energy and mass

    #   The tables used in this sript
    #   correspond to the data with
    #   electroweak corrections :)
    data  = np.genfromtxt( fname , names=True , dtype=None )

    #   Tuple with column names
    #   from PPPC4 tables
    #   This include also the channels
    dchannels = data.dtype.names

    #   check if channel is in dchannels
    #   if not, then exit
    if channel not in dchannels :
        print( 'Channel not available,\
            in PPPC4-DM tables.\n\
            The available channels are:' )
        print( dchannels )
        sys.exit( 'Unknown channel' )

    #   Get values of DM mass and
    #   x_steps to compute the 
    #   number of gamma-rays
    masses  = np.unique( data[ 'mDM' ] )

    xvalues = np.unique( data[ 'Log10x' ] )
    xvalues = np.power( 10 , xvalues )

    #   This is needed to create the
    #   interpolating function
    dmgrid  = np.zeros( ( masses.size , xvalues.size ) )

    #   Filling the grid
    for mindex , mass in enumerate( masses ) :

        #   Get the indices where data[ 'mDM'] is equal to mass
        indices = np.where( data[ 'mDM'] == mass )
        phi = data[ channel ][ indices ]

        #   Loop to extract dm_flux
        for counter , omega in enumerate( phi ) :

            xval = xvalues[ counter ]
            #   Getting the flux and filling the grid
            dmgrid[ mindex ][ counter ] = omega / mass / np.log( 10 ) / xval

    interpolator = RBS( masses , xvalues , dmgrid , kx=1 , ky=1 )

    return interpolator
Exemple #28
0
def load_Bmns(folder='./',
              phasing=0.,
              slice=0,
              cur_up=1.,
              cur_low=1.,
              cur_mid=None,
              probeg_up=False,
              probeg_low=False,
              probeg_mid=False,
              machine=None,
              iplasma=None,
              code='m3dc1',
              ntor=None,
              phase=False,
              Jmn=False):

    if machine is 'diiid':
        conv = 1.0
    elif machine is 'aug':
        conv = -1.0
    elif machine is 'kstar':
        conv = 1.0

    if phase is not True:
        phase = False

    phasing = np.asarray(phasing)

    if code is 'all':

        Bc1 = load_Bmns(folder=folder,
                        phasing=phasing,
                        slice=slice,
                        cur_up=cur_up,
                        cur_low=cur_low,
                        machine=machine,
                        iplasma=iplasma,
                        code='m3dc1',
                        ntor=ntor)
        Bmars = load_Bmns(folder=folder,
                          phasing=phasing,
                          slice=slice,
                          cur_up=cur_up,
                          cur_low=cur_low,
                          machine=machine,
                          iplasma=iplasma,
                          code='mars',
                          ntor=ntor)
        Bipec = load_Bmns(folder=folder,
                          phasing=phasing,
                          slice=slice,
                          cur_up=cur_up,
                          cur_low=cur_low,
                          machine=machine,
                          iplasma=iplasma,
                          code='ipec',
                          ntor=ntor)

        return (Bc1, Bmars, Bipec)

    elif code is 'm3dc1':

        if Jmn:
            file_up = folder + '/jmn3_upper-' + str(slice) + '.cdf'
            file_low = folder + '/jmn3_lower-' + str(slice) + '.cdf'
        else:
            file_up = folder + '/bmn_upper-' + str(slice) + '.cdf'
            file_low = folder + '/bmn_lower-' + str(slice) + '.cdf'

        ds_up = xr.open_dataset(file_up)
        ds_low = xr.open_dataset(file_low)

        ntor = ds_up.attrs['ntor']

        if probeg_up:
            fac = 2.
        else:
            fac = geofac(machine=machine, ntor=ntor)
        cur_up = fac * cur_up

        if probeg_low:
            fac = 2.
        else:
            fac = geofac(machine=machine, ntor=ntor)
        cur_low = fac * cur_low

        m = ds_up.m

        try:
            print("Using Bmn netCDF version " + str(ds_up.version))
            Psi = ds_up.psi_norm
        except AttributeError:
            print("Using Bmn netCDF version 0")
            Psi = ds_up.psi

        Bup = ds_up.bmn_real.data + 1j * ds_up.bmn_imag.data
        Blow = ds_low.bmn_real.data + 1j * ds_low.bmn_imag.data

        if cur_mid is not None:
            if Jmn:
                file_mid = folder + '/jmn_middle-' + str(slice) + '.cdf'
            else:
                file_mid = folder + '/bmn_middle-' + str(slice) + '.cdf'
            ds_mid = xr.open_dataset(file_mid)
            if probeg_mid:
                fac = 2.
            else:
                fac = geofac(machine=machine, ntor=ntor)
            cur_mid = fac * cur_mid
            Bmid = ds_mid.bmn_real.data + 1j * ds_mid.bmn_imag.data

        if (iplasma is not None) and (slice > 0):

            if Jmn:
                file_up = folder + '/jmn3_upper-0.cdf'
                file_low = folder + '/jmn3_lower-0.cdf'
            else:
                file_up = folder + '/bmn_upper-0.cdf'
                file_low = folder + '/bmn_lower-0.cdf'

            ds_vu = xr.open_dataset(file_up)
            ds_vl = xr.open_dataset(file_low)

            Bup -= ds_vu.bmn_real.data
            Bup -= 1j * ds_vu.bmn_imag.data
            Blow -= ds_vl.bmn_real.data
            Blow -= 1j * ds_vl.bmn_imag.data

            if cur_mid is not None:
                if Jmn:
                    file_mid = folder + '/jmn3_middle-0.cdf'
                else:
                    file_mid = folder + '/bmn_middle-0.cdf'
                ds_vm = xr.open_dataset(file_mid)
                Bmid -= ds_vm.bmn_real.data
                Bmid -= 1j * ds_vm.bmn_imag.data

        q = ds_up.q.data

    elif code is 'mars':

        file = folder + '/mars_bmn.nc'
        dset = xr.open_dataset(file)

        m = dset.m
        Psi = dset.s**2.0

        if slice is 0:
            Bup = dset.vacuum_upper_real.data + 1j * dset.vacuum_upper_imag.data
            Blow = dset.vacuum_lower_real.data + 1j * dset.vacuum_lower_imag.data
        elif slice is 1:
            Bup = dset.total_upper_real.data + 1j * dset.total_upper_imag.data
            Blow = dset.total_lower_real.data + 1j * dset.total_lower_imag.data

            if (iplasma is not None):
                Bup -= dset.vacuum_upper_real.data
                Bup -= 1j * dset.vacuum_upper_imag.data
                Blow -= dset.vacuum_lower_real.data
                Blow -= 1j * dset.vacuum_lower_imag.data

        else:
            return NotImplemented

        Psi1 = dset.q_s**2.0
        q1 = dset.q
        f = interp1d(Psi1, q1, bounds_error=False)
        q = f(Psi)

        # flip signs because theta is flipped
        conv = -conv
        m = -m
        q = -q

    elif code is 'ipec':

        if (slice == 0) or (iplasma is not None):

            # get the vacuum field

            base = folder + 'ipec_vbnormal'
            sr = 7
            # skip this many rows
            cr = 3
            # column of real Bmn (zero-based)
            ci = 4
            # column of imaginary Bmn (zero-based)

            (Pv, mv, Bvu, Bvl, qv) = B_ipec(base, sr, cr, ci)

        if slice == 1:

            # get the total field

            base = folder + 'ipec_xbnormal'
            sr = 8
            # skip this many rows
            cr = 7
            # column of real Bmn
            ci = 8
            # column of imaginary Bmn

            (Pt, mt, Btu, Btl, qt) = B_ipec(base, sr, cr, ci)

        if slice == 0:
            # just the vacuum field
            (Psi, m, Bup, Blow, q) = (Pv, mv, Bvu, Bvl, qv)
        elif (slice == 1) and (iplasma is None):
            # just the total field
            (Psi, m, Bup, Blow, q) = (Pt, mt, Btu, Btl, qt)

        else:
            # we need to subtract the vacuum from the total field
            Rv = RBS(Pv, mv, Bvu.real)
            Iv = RBS(Pv, mv, Bvu.imag)
            Bvu = Rv(Pt, mt) + 1j * Iv(Pt, mt)

            Rv = RBS(Pv, mv, Bvl.real)
            Iv = RBS(Pv, mv, Bvl.imag)
            Bvl = Rv(Pt, mt) + 1j * Iv(Pt, mt)

            (Psi, m, Bup, Blow, q) = (Pt, mt, Btu - Bvu, Btl - Bvl, qt)

        conv = -conv
        m = -m
        q = -q

    else:
        return NotImplemented

    # Quantities used for all code results

    cur = xr.DataArray(np.cos(pi * phasing / 180.) +
                       conv * 1j * np.sin(pi * phasing / 180.),
                       coords=[('phasing', phasing)])

    Bmn_up = cur_up * xr.DataArray(Bup, coords=[('Psi', Psi), ('m', m)])
    Bmn_low = cur_low * xr.DataArray(Blow, coords=[('Psi', Psi), ('m', m)])
    Bmn = cur * Bmn_up + Bmn_low

    if cur_mid is not None:
        cur2 = xr.DataArray(np.cos(pi * phasing / 180.) +
                            conv * 1j * np.sin(pi * phasing / 180.),
                            coords=[('phasing2', phasing)])
        Bmn_mid = cur_mid * xr.DataArray(Bmid, coords=[('Psi', Psi), ('m', m)])
        Bmn = Bmn + cur2 * Bmn_mid

    if phase:
        Bmn = xru.angle(Bmn, deg=True) % 360.
    else:
        Bmn = np.abs(Bmn)

    q = xr.DataArray(q, coords=[('Psi', Psi)])

    if Jmn:
        Bmns = xr.Dataset({'Jmn': Bmn, 'q': q})
    else:
        Bmns = xr.Dataset({'Bmn': Bmn, 'q': q})

    Bmns.attrs['ntor'] = ntor
    Bmns.attrs['phase'] = phase

    return Bmns
Exemple #29
0
 def _setup_interpolants(self):
     """Constructs interpolants of the appropriate fields"""
     nhH, nhW = 1.0 / self._a - 1.0, self._ar / self._a - 1.0
     bbox = [-nhW, nhW, -nhH, nhH]
     self._Cr_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[2, :, :],
                        bbox=bbox)
     self._Cz_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[3, :, :],
                        bbox=bbox)
     self._Lr_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[4, :, :],
                        bbox=bbox)
     self._Lz_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[5, :, :],
                        bbox=bbox)
     self._Sr_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[6, :, :],
                        bbox=bbox)
     self._Sz_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[7, :, :],
                        bbox=bbox)
     self._Up_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[8, :, :],
                        bbox=bbox)
     self._Wr_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[9, :, :],
                        bbox=bbox)
     self._Wz_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[10, :, :],
                        bbox=bbox)
     self._kappa = 4.0 / (self._R * self._a**3)
     self._Fr_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[4, :, :] +
                        self._kappa * self._aR_data[6, :, :],
                        bbox=bbox)
     self._Fz_RBS = RBS(self._rs,
                        self._zs,
                        self._aR_data[5, :, :] +
                        self._kappa * self._aR_data[7, :, :],
                        bbox=bbox)
     return
Exemple #30
0
    def _process_gfile(self):

        # read geqdsk file
        with open(self.gfile, 'r') as gfile:
            eqdsk = gfile.readlines()

        # parse line 0
        self.nw = int(eqdsk[0].split()[-2])
        self.nh = int(eqdsk[0].split()[-1])

        # parse line 1
        try:
            entrylength = 16
            rdim, zdim, _, rmin, zmid = \
                [float(eqdsk[1][j * entrylength:(j + 1) * entrylength])
                 for j in range(len(eqdsk[1]) // entrylength)]
        except:
            try:
                entrylength = 15
                rdim, zdim, _, rmin, zmid = \
                    [float(eqdsk[1][j * entrylength:(j + 1) * entrylength])
                        for j in range(len(eqdsk[1]) // entrylength)]
            except:
                raise IOError('Failed to read G-EQDSK line')

        # parse line 2
        self.Rmaxis, self.Zmaxis, self.psiax, self.psisep, _ = \
            [float(eqdsk[2][j * entrylength:(j + 1) * entrylength])
                for j in range(len(eqdsk[2]) // entrylength)]

        # parse line 3
        _, psiax2, _, rmag2, _ = \
            [float(eqdsk[3][j * entrylength:(j + 1) * entrylength])
                for j in range(len(eqdsk[3]) // entrylength)]

        # parse line 4
        zmag2, _, psisep2, _, _ = \
            [float(eqdsk[4][j * entrylength:(j + 1) * entrylength])
                for j in range(len(eqdsk[4]) // entrylength)]

        if self.Rmaxis != rmag2:
            raise ValueError('Inconsistent self.Rmaxis: %7.4g, %7.4g' %
                             (self.Rmaxis, rmag2))
        if self.psiax != psiax2:
            raise ValueError('Inconsistent psiax: %7.4g, %7.4g' %
                             (self.psiax, psiax2))
        if self.Zmaxis != zmag2:
            raise ValueError('Inconsistent self.Zmaxis: %7.4g, %7.4g' %
                             (self.Zmaxis, zmag2))
        if self.psisep != psisep2:
            raise ValueError('Inconsistent psisep: %7.4g, %7.4g' %
                             (self.psisep, psisep2))

        # read flux profiles and 2D flux grid
        # pol current (F=RBt) [T-m] on uniform flux grid
        self.F_fs = np.empty(self.nw)
        start_line = 5
        lines = np.arange(self.nw // 5)
        if self.nw % 5 != 0:
            lines = np.arange(self.nw // 5 + 1)
        for i in lines:
            n_entries = len(eqdsk[i + start_line]) // entrylength
            self.F_fs[i * 5:i * 5 + n_entries] = \
                [float(eqdsk[i + start_line][j * entrylength:(j + 1) * entrylength])
                    for j in range(n_entries)]
        start_line = i + start_line + 1

        # pressure [Pa] on uniform flux grid
        self.p_fs = np.empty(self.nw)
        for i in lines:
            n_entries = len(eqdsk[i + start_line]) // entrylength
            self.p_fs[i * 5:i * 5 + n_entries] = \
                [float(eqdsk[i + start_line][j * entrylength:(j + 1) * entrylength])
                    for j in range(n_entries)]
        start_line = i + start_line + 1

        # FF'=FdF/dpsi on uniform flux grid
        self.ffprime_fs = np.empty(self.nw)
        for i in lines:
            n_entries = len(eqdsk[i + start_line]) // entrylength
            self.ffprime_fs[i * 5:i * 5 + n_entries] = \
                [float(eqdsk[i + start_line][j * entrylength:(j + 1) * entrylength])
                    for j in range(n_entries)]
        start_line = i + start_line + 1

        # dp/dpsi [Pa/(Wb/rad)] on uniform flux grid
        self.pprime_fs = np.empty(self.nw)
        for i in lines:
            n_entries = len(eqdsk[i + start_line]) // entrylength
            self.pprime_fs[i * 5:i * 5 + n_entries] = \
                [float(eqdsk[i + start_line][j * entrylength:(j + 1) * entrylength])
                    for j in range(n_entries)]
        start_line = i + start_line + 1

        # pol. flux [Wb/rad] on rectangular grid
        psirz_1d = np.empty(self.nw * self.nh)
        lines_twod = np.arange(self.nw * self.nh // 5)
        if self.nw * self.nh % 5 != 0:
            lines_twod = np.arange(self.nw * self.nh // 5 + 1)
        for i in lines_twod:
            n_entries = len(eqdsk[i + start_line]) // entrylength
            psirz_1d[i * 5:i * 5 + n_entries] = \
                [float(eqdsk[i + start_line][j * entrylength:(j + 1) * entrylength])
                    for j in range(n_entries)]
        start_line = i + start_line + 1
        self.psirz = psirz_1d.reshape(self.nh, self.nw)

        # q safety factor on uniform flux grid
        self.qpsi_fs = np.empty(self.nw)
        for i in lines:
            n_entries = len(eqdsk[i + start_line]) // entrylength
            self.qpsi_fs[i * 5:i * 5 + n_entries] = \
                [float(eqdsk[i + start_line][j * entrylength:(j + 1) * entrylength])
                    for j in range(n_entries)]
        start_line = i + start_line + 1

        # flip signs if psi-axis > psi-separatrix
        if self.psiax > self.psisep:
            self.psirz = -self.psirz
            self.ffprime_fs = -self.ffprime_fs
            self.pprime_fs = -self.pprime_fs
            self.psiax *= -1
            self.psisep *= -1

        #  R,Z grids
        dw = rdim / (self.nw - 1)
        dh = zdim / (self.nh - 1)
        self.rgrid = np.array([rmin + i * dw for i in range(self.nw)])
        self.zgrid = np.array([zmid - zdim / 2 + i * dh \
                          for i in range(self.nh)])

        # theta grid
        self.theta_grid = np.linspace(-np.pi, np.pi, self.ntheta)

        # flux grids
        self.psinorm_grid = np.linspace(0, 1, self.nw)
        self.psi_grid = np.linspace(self.psiax, self.psisep, self.nw)

        # flux surface R/Z coords. on flux and theta grids
        self.R_ftgrid = np.empty((self.nw, self.ntheta))
        self.Z_ftgrid = np.empty((self.nw, self.ntheta))
        t1 = np.arctan2(zmid - zdim / 2 - self.Zmaxis,
                        rmin - self.Rmaxis)  # angle(mag axis to bot. left)
        t2 = np.arctan2(zmid - zdim / 2 - self.Zmaxis,
                        rmin + rdim - self.Rmaxis)  # angle (mag ax to bot. rt)
        t3 = np.arctan2(zmid + zdim / 2 - self.Zmaxis,
                        rmin + rdim - self.Rmaxis)  # angle (mag ax to top rt)
        t4 = np.arctan2(zmid + zdim / 2 - self.Zmaxis,
                        rmin - self.Rmaxis)  # angle (mag ax to top left)
        # spline object for psi on RZ grid
        self.psi_spl = RBS(self.zgrid,
                           self.rgrid,
                           self.psirz,
                           kx=self.io,
                           ky=self.io)
        psilimit = self.psisep + (self.psisep - self.psiax) * 0.05
        for j, theta in enumerate(self.theta_grid):
            if theta < t1 or theta >= t4:
                rad = (rmin - self.Rmaxis) / np.cos(theta)
            elif theta < t2 and theta >= t1:
                rad = -(self.Zmaxis - zmid + zdim / 2) / np.sin(theta)
            elif theta < t3 and theta >= t2:
                rad = (rmin + rdim - self.Rmaxis) / np.cos(theta)
            elif theta < t4 and theta >= t3:
                rad = (zmid + zdim / 2 - self.Zmaxis) / np.sin(theta)
            else:
                raise ValueError('Error with theta angle')
            dr = rad / (self.nw - 1) * np.cos(theta)
            dz = rad / (self.nw - 1) * np.sin(theta)
            # RZ coordinates from axis at fixed poloidal angle
            r_pol = np.array([self.Rmaxis + i * dr for i in range(self.nw)])
            z_pol = np.array([self.Zmaxis + i * dz for i in range(self.nw)])
            psi_rad = self.psi_spl.ev(z_pol, r_pol)
            psi_rad[0] = self.psiax
            # must restrict interpolation range because of non-monotonic psi around coils
            end_ind = 0
            for i in range(self.nw - 1):
                if psi_rad[i] > psilimit:
                    break
                if psi_rad[i + 1] <= psi_rad[i] and i < self.nw - 2:
                    psi_rad[i + 1] = 0.5 * (psi_rad[i] + psi_rad[i + 2])
                end_ind += 1

            # interp objects for indices
            psi_int = interp1d(psi_rad[:end_ind + 1],
                               np.arange(end_ind + 1),
                               kind=self.io)
            # near psi-grid index for separatrix
            indsep = int(psi_int(self.psisep)) + 3
            # RZ interp. objects along poloidal line from axis
            R_int = interp1d(psi_rad[:indsep], r_pol[:indsep], kind=self.io)
            Z_int = interp1d(psi_rad[:indsep], z_pol[:indsep], kind=self.io)
            # RZ coords of FS grid at fixed theta
            self.R_ftgrid[:, j] = R_int(self.psi_grid)
            self.Z_ftgrid[:, j] = Z_int(self.psi_grid)

        # find average elevation for all flux surfaces
        self.Z_avg_fs = np.empty(self.nw)
        for i in range(self.nw):
            ds = np.empty(self.ntheta)
            ds[1:self.ntheta - 1] = 0.5 * np.sqrt((self.R_ftgrid[i, 2:self.ntheta] \
                - self.R_ftgrid[i, 0:self.ntheta - 2])**2 \
                + (self.Z_ftgrid[i, 2:self.ntheta] \
                - self.Z_ftgrid[i, 0:self.ntheta - 2])**2)
            ds[0] = 0.5 * np.sqrt((self.R_ftgrid[i, 1] - self.R_ftgrid[i, -1]) ** 2 \
                                   + (self.Z_ftgrid[i, 1] - self.Z_ftgrid[i, -1])**2)
            ds[-1] = 0.5 * np.sqrt((self.R_ftgrid[i, 0] - self.R_ftgrid[i, -2]) ** 2 \
                                   + (self.Z_ftgrid[i, 0] - self.Z_ftgrid[i, -2])**2)
            self.Z_avg_fs[i] = np.average(self.Z_ftgrid[i, :], weights=ds)

        # R_major and r_minor for all flux surfaces
        self.R_major_fs = np.empty(self.nw)
        self.R_major_fs[0] = self.Rmaxis
        self.r_minor_fs = np.empty(self.nw)
        self.r_minor_fs[0] = 0.
        itheta = self.ntheta // 4
        # loop over flux grid
        for i in range(1, self.nw):
            # low field side
            R_array = self.R_ftgrid[i, itheta:3 * itheta]
            Z_array = self.Z_ftgrid[i, itheta:3 * itheta]
            Z_int = interp1d(Z_array, R_array, kind=self.io)
            R_out = Z_int(self.Z_avg_fs[i])
            # high field side
            R_array = np.roll(self.R_ftgrid[i, :-1],
                              self.ntheta // 2)[itheta:3 * itheta]
            Z_array = np.roll(self.Z_ftgrid[i, :-1],
                              self.ntheta // 2)[itheta:3 * itheta]
            # have to use negative Z_array here to have increasing order
            Z_int = interp1d(-Z_array, R_array, kind=self.io)
            R_in = Z_int(-self.Z_avg_fs[i])
            self.R_major_fs[i] = 0.5 * (R_out + R_in)  # R_maj at self.Z_avg_fs
            self.r_minor_fs[i] = 0.5 * (R_out - R_in)  # r_min at self.Z_avg_fs

        self.Rmaxis_lcfs = self.R_major_fs[-1]
        self.a_lcfs = self.r_minor_fs[-1]
        self.eps_lcfs = self.a_lcfs / self.Rmaxis_lcfs

        if not self.quiet:
            print('Header: %s' % eqdsk[0])
            print('Resolution: %d x %d' % (self.nw, self.nh))
            print('\n*** Magnetic axis and LCFS ***')
            print('R mag. axis = {:.3g} m'.format(self.Rmaxis))
            print('Z mag. axis = {:.3g} m'.format(self.Zmaxis))
            print('psi-axis = {:.3e} Wb/rad'.format(self.psiax))
            print('psi-sep = {:.3e} Wb/rad'.format(self.psisep))
            print('R0_lcfs = {:.3g} m'.format(self.Rmaxis_lcfs))
            print('a_lcfs = {:.3g} m'.format(self.a_lcfs))
            print('eps_lcfs = {:.3g}'.format(self.eps_lcfs))