def main(): for label, genre in enumerate(GENRE_LIST): for fn in glob.glob(os.path.join(GENRE_DIR, genre)): for wavfile in os.listdir(fn): if wavfile.endswith("wav"): print(genre) create_ceps(os.path.join(GENRE_DIR, genre, wavfile))
def main(): for label, dialect in enumerate(DIALECT_LIST): for fn in glob.glob(os.path.join(DIALECT_DIR, dialect)): for wavfile in os.listdir(fn): if wavfile.endswith("wav"): create_ceps(os.path.join(DIALECT_DIR, dialect, wavfile))
def main_function(docName): ''' docName is the string which tells the name of the file to be downloaded. Returns : 1. Success message 2. full file location (to download later) ''' for wavfile in os.listdir(MEDIA_ROOT): if wavfile.endswith("wav"): if wavfile == docName: # for FFT Features : create_fft(os.path.join(MEDIA_ROOT + wavfile)) # for MFCC Features : #create_ceps(os.path.join(MEDIA_ROOT + wavfile)) # for STFT Features : #create_stft_feature(os.path.join(MEDIA_ROOT + wavfile)) # for DWT Features : #create_dwt_feature(os.path.join(MEDIA_ROOT + wavfile)) # for FFT : df_feature_1 = pd.DataFrame(function_dict_1) # for MFCC : df_feature_2 = pd.DataFrame(function_dict_2) # for STFT : df_feature_3 = pd.DataFrame(function_dict_3).astype(str) # for DWT : df_feature_4 = pd.DataFrame(function_dict_4) # combining them all : df = pd.concat( [df_feature_1, df_feature_2, df_feature_3, df_feature_4], ignore_index=False, axis=1) #print(df.head()) # to get the file name. base_fn, ext = os.path.splitext(wavfile) fname = base_fn + ".xlsx" full_file_loc = MEDIA_ROOT + 'convFiles/' + fname writer = ExcelWriter(full_file_loc) df.to_excel(writer, 'Sheet1', index=False) writer.save() return ("File " + fname + " created!", full_file_loc)
import sys import os import scipy.io.wavfile import scipy.signal import matplotlib.pyplot as plt # from matplotlib.pyplot import specgram os.chdir(sys.argv[1]) # Directory provided as a command line argument will be opened to visualize the files inside wavfiles = [] for wavfile in os.listdir(sys.argv[1]): if wavfile.endswith("wav"): wavfiles.append(wavfile) wavfiles.sort() # Declare sampling rates and song arrays for each arg sampling_rates = [] song_arrays = [] # Read wavfiles for wavfile in wavfiles: sampling_rate, song_array = scipy.io.wavfile.read(wavfile) sampling_rates.append(sampling_rate) song_arrays.append(song_array) i = 1 # plot number # Plot spectrogram for each wave_file