def entropy_sharp(self,mu,h0):
     b = 1.0;
     mmu = np.mean(mu);
     if mmu+entropy(mu) > 1+h0:
         b = findroot((lambda a: mmu+entropy(np.power(mu,a))-(1+h0)));
     if b < 0.0:
         b = 1.0;
     return np.power(mu,b);
def multiplier(eta):
    x = findroot(lambda l: m.u(m.u_inverse((l + eta *
                                           (1 - m.sigma)) ** (-1)),
                               m.u_prime_of_n_inverse(
                                - (l + eta * (1 + m.gamma)) **
                                (-1))) - udev,
                 0.001, 10)
    return x
Exemple #3
0
def Rci(cl,xref,xdat,res=1e3):

	if not xref:
		xref = max(xdat)
		Rbnds = [min(xdat),xref]
	else:
		Rbnds = [xref,max(xdat)]
		
	kde = gaussian_kde(xdat)

	def cumprob(xbnd):
	
		xgrid = np.linspace(xref,xbnd,res)
		ydat = kde(xgrid)
		
		return abs(0.5*cl-abs(prob(ydat,xgrid)))
		
	rootR = findroot(cumprob,bounds=tuple(Rbnds),method='bounded',options={'xatol':1e-3})
	xbndR = rootR.x
	
	return xbndR
Exemple #4
0
 def ypoint(self, y):
     root = findroot(lambda y2: self._BezierFunction(y2)[1]-y, 0, 1)
     return self._BezierFunction(root)
Exemple #5
0
 def xpoint(self, x):
     root = findroot(lambda x2: self._BezierFunction(x2)[0]-x, 0, 1)
     return self._BezierFunction(root)
Exemple #6
0
 def ypoint(self, y):
     root = findroot(lambda y2: self._BezierFunction(y2)[1] - y, 0, 1)
     return self._BezierFunction(root)
Exemple #7
0
 def xpoint(self, x):
     root = findroot(lambda x2: self._BezierFunction(x2)[0] - x, 0, 1)
     return self._BezierFunction(root)