Exemple #1
0
def _ell(A, m):
    """
    A helper function for expm_2009.

    Parameters
    ----------
    A : linear operator
        A linear operator whose norm of power we care about.
    m : int
        The power of the linear operator

    Returns
    -------
    value : int
        A value related to a bound.

    """
    if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
        raise ValueError('expected A to be like a square matrix')

    # The c_i are explained in (2.2) and (2.6) of the 2005 expm paper.
    # They are coefficients of terms of a generating function series expansion.
    choose_2m_m = comb(2 * m, m, exact=True)
    abs_c_recip = float(choose_2m_m * factorial(2 * m + 1))

    # This is explained after Eq. (1.2) of the 2009 expm paper.
    # It is the "unit roundoff" of IEEE double precision arithmetic.
    u = 2**-53

    # Compute the one-norm of matrix power p of abs(A).
    A_abs_onenorm = matfuncs._onenorm_matrix_power_nnm(abs(A), 2 * m + 1)

    # Treat zero norm as a special case.
    if not A_abs_onenorm:
        return 0

    alpha = A_abs_onenorm / (_onenorm(A) * abs_c_recip)
    log2_alpha_div_u = np.log2(alpha / u)
    value = int(np.ceil(log2_alpha_div_u / (2 * m)))
    return max(value, 0)
Exemple #2
0
 def d10_tight(self):
     if self._d10_exact is None:
         self._d10_exact = _onenorm(self.A10)**(1 / 10.)
     return self._d10_exact
Exemple #3
0
 def d6_tight(self):
     if self._d6_exact is None:
         self._d6_exact = _onenorm(self.A6)**(1 / 6.)
     return self._d6_exact
Exemple #4
0
 def d8_tight(self):
     if self._d8_exact is None:
         self._d8_exact = _onenorm(self.A8)**(1 / 8.)
     return self._d8_exact
Exemple #5
0
 def d4_tight(self):
     if self._d4_exact is None:
         self._d4_exact = _onenorm(self.A4)**(1 / 4.)
     return self._d4_exact