Exemple #1
0
def covariance_wind(f, c0, rho, distance, L, Cv, steps=10, initial=0.001):
    """Covariance. Wind fluctuations only.
    
    :param f: Frequency
    :param c0: Speed of sound
    :param rho: Spatia separation
    :param distance: Distance
    :param L: Correlation length
    :param Cv: Variance of wind speed
    :param initial: Initial value
    
    
    """
    f = np.asarray(f)
    k = 2.*np.pi*f / c0
    K0 = 2.*np.pi / L
    
    A = 5.0/(18.0*np.pi*gamma(1./3.)) # Equation 11, see text below. Approximate result is 0.033
    gamma_v = 3./10.*np.pi**2.*A*k**2.*K0**(-5./3.)*4.*(Cv/c0)**2.  # Equation 28, only wind fluctuations

    krho = k * rho
    
    t = krho[:, None] * np.linspace(0.00000000001, 1., steps) # Fine discretization for integration

    #t[t==0.0] = 1.e-20

    gamma56 = gamma(5./6.)
    bessel56 = besselk(5./6., t)
    bessel16 = besselk(1./6., t)
    
    integration = cumtrapz(ne.evaluate("2.0**(1./6.)*t**(5./6.)/gamma56 * (bessel56 - t/2.0 * bessel16 )"), initial=initial)[:,-1]
    B = ne.evaluate("2.0*gamma_v * distance / krho * integration")
    
    #B = 2.0*gamma_v * distance / krho * cumtrapz((2.0**(1./6.)*t**(5./6.)/gamma(5./6.) * (besselk(5./6., t) - t/2.0*besselk(1./6., t)) ), initial=initial)[:,-1]
    return B
Exemple #2
0
def grad2Vg_64(x, y, z, sigma, g, gi, gj, bi, bj):
    return (g**2 * sigma**4 *
            (-120 * g * z**6 *
             (g * z * besselk(0, g * z) + 8 * besselk(1, g * z)) + z *
             (19 * g**4 * sigma**6 * z**2 + 480 * z**4 *
              (-6 + (gi**2 + gj**2) * z**2) - 8 * g**2 *
              (45 * z**6 + sigma**6 *
               (-110 + (gi**2 + gj**2) * z**2))) * besselk(2, g * z) + g *
             (-1680 * z**6 + sigma**6 *
              (5280 + z**2 *
               (-48 * (gi**2 + gj**2) + g**4 * z**2 + g**2 *
                (224 - (gi**2 + gj**2) * z**2)))) * besselk(3, g * z)) *
            cos(gi * (bi + x) + gj * (bj + y))) / (960 * z**9)
Exemple #3
0
def trapes_analytical(h):
    
    N=int(round(1.0/h))      # number of unknowns, assuming the RHS boundary value is known
    x=np.arange(N+1)*h   
#    x = np.linspace(0, 1,  N)
    z0 = 4*sqrt(2)
    z1 = 8
    g = sqrt(2)/8
    
    k1z0, i0z1 = besselk(1, z0), besseli(0, z1)
    k0z1, i1z0 = besselk(0, z1), besseli(1, z0)
    k0z0, i0z0 = besselk(0, z0), besseli(0, z0)
    
    J = k1z0*i0z1 + k0z1*i1z0 + g*(k0z0*i0z1 - k0z1*i0z0)
    A = (k1z0 + g*k0z0)/J
    B = (i1z0 - g*i0z0)/J
    
    z = sqrt(32.*(1 + x))
    theta = A* besseli(0, z) + B* besselk(0, z)
    dtheta = 16*(A*besseli(1, z) - B*besselk(1, z))/z
    return x, theta, dtheta 
Exemple #4
0
    def set_qpabsb_eff(self, l_fin, h_fin, loverlap, l_TES, eff_absb=1.22e-4):
        ci = 2 * l_TES
        ri = ci / (2 * np.pi)

        a = (l_fin + l_TES) / 2
        b = l_fin

        co1 = 2 * l_TES + 2 * np.pi * l_fin
        h = ((a - b) / (a + b)) ** 2
        co = np.pi * (a + b) * (1 + 3 * h / (10 + np.sqrt(4 - 3 * h)))
        ro = co1 / (2 * np.pi)

        # -------- Relevant length scales
        # Diffusion length
        ld = 567 * h_fin  # µm

        # Surface impedance length
        la = 1 /eff_absb*h_fin**2/loverlap  # µm
        la_chk = (1e6 + 1600 / (900 ** 2) * 5) * (h_fin ** 2)  # µm

        # -------- Dimensionless Scales
        rhoi = ri / ld
        rhoo = ro / ld
        lambdaA = la / ld

        # QP collection coefficient
        """fQP = 2 * rhoi / (rhoo ** 2 - rhoi ** 2) * \
        (iv(1, rhoo) * kv(1, rhoi) - iv(1, rhoi) * kv(1, rhoo)) / \
        (iv(1, rhoo) * kv(0, rhoi) + lambdaA * kv(1, rhoi) + (iv(0, rhoi) - lambdaA * iv(1, rhoi)) * kv(1, rhoo))

        fQP = 2 * rhoi / (rhoo**2 - rhoi**2) * (iv(1, rhoo) * kv(1, rhoi) - iv(1, rhoi) * kv(1, rhoo)) / \
              (iv(1, rhoo) * (kv(0, rhoi) + lambdaA * kv(1, rhoi)) + (iv(0, rhoi) - lambdaA*iv(1, rhoi))*kv(1, rhoo))"""

        fQP = 2 * rhoi / (rhoo ** 2 - rhoi ** 2) \
        *(besseli(1, rhoo) * besselk(1, rhoi) - besseli(1, rhoi) * besselk(1, rhoo)) \
        / (besseli(1, rhoo) * (besselk(0, rhoi) + lambdaA * besselk(1, rhoi)) +
        (besseli(0, rhoi) - lambdaA * besseli(1, rhoi)) * besselk(1, rhoo))
        self._eQPabsb = fQP
Exemple #5
0
def matern(d, rho, nu, phi=1):
	'''
	Modified from matern.m in the BFDA package for Matlab (Yang & Ren, 206)
	
	Downloaded 2020-12-11
	
	Yang J, Ren P (2019). BFDA: A matlab toolbox for bayesian functional data analysis. J Stat Soft 89(2): doi: 10.18637/jss.v089.i02
	10.18637/jss.v089.i02
	https://www.jstatsoft.org/article/view/v089i02
	'''
	dm        = (d * sqrt(2*nu)) / rho
	dm[dm==0] = 1e-10
	con       = 1 / (  2**(nu-1) * gamma(nu) )
	cov       = phi * con * (dm**nu) * besselk(nu, dm)
	return cov
Exemple #6
0
def gradVg_z_64(x, y, z, sigma, g, gi, gj, bi, bj):
    return -(g**3 * sigma**4 * (
        10 *
        (g**2 * sigma**6 * z - 48 * z**5) * besselk(3, g * z) + g * sigma**6 *
        (80 + g**2 * z**2) * besselk(4, g * z)) * cos(gi * (bi + x) + gj *
                                                      (bj + y))) / (960 * z**7)
Exemple #7
0
def gradVg_y_64(x, y, z, sigma, g, gi, gj, bi, bj):
    return -(g**2 * gj * sigma**4 *
             (-480 * z**3 * besselk(2, g * z) + g**3 * sigma**6 *
              besselk(5, g * z)) * sin(gi * (bi + x) + gj *
                                       (bj + y))) / (960 * z**5)
Exemple #8
0
def Vg_64(x, y, z, sigma, g, gi, gj, bi, bj):
    return (g**2 * sigma**4 * (-480 * z**3 * besselk(2, g * z) +
                               g**3 * sigma**6 * besselk(5, g * z)) *
            np.cos(gi * (bi + x) + gj * (bj + y))) / (960 * z**5)
Exemple #9
0
    def set_qpabsb_eff_matt(self):
        """
        Calculate the QP collection efficiciency using Matt's method. Sets class atribute
        slef.eQPabsb
        
        Parameters:
        -----------
        eff_absb : float, optional
            W/Al transmition/trapping probability
                
        """
        # From Effqp_2D_moffatt.m in Matt's dropbox
        # Here we are using Robert Moffatt's full QP model. There are some pretty big assumptions:
        # 1) Diffusion length scales with Al thickness (trapping surface dominated and diffusion thickness limited)
        # 2) Absorption length scales with Al thickness**2/l_overlap
        # Future: scale boundary impedance with W thickness
        # INPUTS:
        #    1) fin length [um]
        #    2) fin height [um]
        #    3) W/Al overlap [um]
        #    4) TES length [um]
        #    5) W/Al transmition/trapping probability
        # OUTPUTS:
        #    1) Quasi-Particle Collection Efficiency
        #    2) Diffusion Length
        #    3) W/Al Surface Absorption Length
        #    4) W/Al Transmission Probability
        # https://www.stanford.edu/~rmoffatt/Papers/Diffusion%20and%20Absorption%20with%201D%20and%202D%20Solutions.pdf
        # DOI: 10.1007/s10909-015-1406-7
        # -------------------------------------------------------------------------------------------------------------

        l_tes = self.TES.l * 1e6  #convert to [um]
        l_fin = self.l_fin * 1e6  #convert to [um]
        h_fin = self.h_fin * 1e6  #convert to [um]
        l_overlap = self.TES.l_overlap * 1e6  #convert to [um]
        n_fin = self.TES.n_fin
        eff_absb = self.eff_absb
        # We assume pie shaped QP collection fins
        ci = 2 * l_tes  # inner circle circumferance
        ri = ci / (2 * np.pi)  # inner radius

        # Outer circumferance of "very simplified" ellipse
        co1 = 2 * l_tes + 2 * np.pi * l_fin

        # Another approximation...
        a = (l_fin + l_tes) / 2
        b = l_fin

        # https://www.mathsisfun.com/geometry/ellipse-perimeter.html
        h = ((a - b) / (a + b))**2
        co = np.pi * (a + b) * (1 + 3 * h / (10 + np.sqrt(4 - 3 * h)))
        ro = co1 / (2 * np.pi)

        # -------- Relevant length scales ------------
        # Diffusion length
        ld = 567 * h_fin  # [µm] this is the fit in Jeff's published LTD 16 data
        self.ld = ld
        # Surface impedance length
        la = (1 / eff_absb) * (h_fin**2 / l_overlap
                               )  # [µm] these match the values used by Noah
        la_chk = (1e6 + 1600 / (900**2) * 5) * (h_fin**2)  # µm
        self.la = la

        # -------- Dimensionless Scales -------
        rhoi = ri / ld
        rhoo = ro / ld
        lambdaA = la / ld

        # QP collection coefficient

        fQP = (2 * rhoi / (rhoo ** 2 - rhoi ** 2)) \
        *(besseli(1, rhoo) * besselk(1, rhoi) - besseli(1, rhoi) * besselk(1, rhoo)) \
        / (besseli(1, rhoo) * (besselk(0, rhoi) + lambdaA * besselk(1, rhoi)) +
        (besseli(0, rhoi) - lambdaA * besseli(1, rhoi)) * besselk(1, rhoo))
        self.eQPabsb = fQP