def getSamples(self, m=None): """ Generates samples from the Arcsine distribution. :param arcsine self: An instance of Arcsine class. :param integer m: Number of random samples. If not provided, a default of 5e05 is assumed. """ if m is not None: number = m else: number = 500000 return arcsine.rvs(size=number)
x = np.linspace(arcsine.ppf(0.01), arcsine.ppf(0.99), 100) ax.plot(x, arcsine.pdf(x), 'r-', lw=5, alpha=0.6, label='arcsine pdf') # Alternatively, the distribution object can be called (as a function) # to fix the shape, location and scale parameters. This returns a "frozen" # RV object holding the given parameters fixed. # Freeze the distribution and display the frozen ``pdf``: rv = arcsine() ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') # Check accuracy of ``cdf`` and ``ppf``: vals = arcsine.ppf([0.001, 0.5, 0.999]) np.allclose([0.001, 0.5, 0.999], arcsine.cdf(vals)) # True # Generate random numbers: r = arcsine.rvs(size=1000) # And compare the histogram: ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) ax.legend(loc='best', frameon=False) plt.show()
def arcsin_rvs(N, a): x = arcsine.rvs(loc=0, scale=a, size=N) return x