Exemple #1
0
    def plot_A(self, histtype="stepfilled"):
        if histtype=="step":
            ALPHAG=0.5
        else:
            ALPHAG=ALPHA

        plot_hist(plt, self.gA, clr=self.clrs[0], alp=ALPHAG, ht=histtype)

        sG=np.sqrt(np.var(self.gAi))
        mG=np.mean(self.gAi)
        amin, amax = plt.xlim()
        alist=np.arange(0.0, np.max(self.fgNLA), 0.001)
        theoryGdist=chi.pdf(alist, 3,scale=sG)
        plt.plot(alist, theoryGdist,self.clrs[0], linestyle=self.ls[0], linewidth=LW, label=self.TYPELABEL+r"$=0$")

        for i in range(len(self.fgnls)):
            if (self.theoryplot==False):
                lbl=self.TYPELABEL+"="+NtoSTR(self.fgnls[i])
            else:
                lbl=None

            plot_hist(plt, self.fgNLA[i], clr=self.clrs[i+1], alp=ALPHA, labl=lbl)

            if (self.theoryplot):
                theorynGdist=chi.pdf(alist, 3, scale=np.sqrt((self.A1const*self.fgnls[i])**2.0+sG**2.0))
                plt.plot(alist, theorynGdist, self.clrs[i+1], linestyle=self.ls[i+1], linewidth=LW, label=self.TYPELABEL+"="+NtoSTR(self.fgnls[i]))

        # theory plots

        #plt.xlim(0.0, 0.2)
        #plt.xticks([0.02, 0.04, 0.06, 0.08, 0.10])
        plt.xlabel(r'$A$')
        plt.ylabel(r'$p(A)$')
        plt.legend(fontsize=20)
Exemple #2
0
    def plot_A(self, histtype="stepfilled"):
        if histtype=="step":
            ALPHAG=0.5
        else:
            ALPHAG=ALPHA
            
        plot_hist(plt, self.gA, clr=self.clrs[0], alp=ALPHAG, ht=histtype)

        sG=np.sqrt(np.var(self.gAi))
        mG=np.mean(self.gAi)
        amin, amax = plt.xlim()
        alist=np.arange(0.0, np.max(self.fgNLA), 0.001)
        theoryGdist=chi.pdf(alist, 3,scale=sG)
        plt.plot(alist, theoryGdist,self.clrs[0], linestyle=self.ls[0], linewidth=LW, label=self.TYPELABEL+r"$=0$")

        for i in range(len(self.fgnls)):
            if (self.theoryplot==False):
                lbl=self.TYPELABEL+"="+NtoSTR(self.fgnls[i])
            else:
                lbl=None
                
            plot_hist(plt, self.fgNLA[i], clr=self.clrs[i+1], alp=ALPHA, labl=lbl)
            
            if (self.theoryplot):
                theorynGdist=chi.pdf(alist, 3, scale=np.sqrt((self.A1const*self.fgnls[i])**2.0+sG**2.0))
                plt.plot(alist, theorynGdist, self.clrs[i+1], linestyle=self.ls[i+1], linewidth=LW, label=self.TYPELABEL+"="+NtoSTR(self.fgnls[i]))
        
        # theory plots
        
        #plt.xlim(0.0, 0.2)
        #plt.xticks([0.02, 0.04, 0.06, 0.08, 0.10])
        plt.xlabel(r'$A$')
        plt.ylabel(r'$p(A)$')
        plt.legend(fontsize=20)
def error_multi_output_regressor(actual, prediction_gbr, prediction_mlp,
                                 prediction_rfr):

    distance_error_gbr = []
    distance_error_mlp = []
    distance_error_rfr = []

    for i in range(len(prediction_gbr)):
        error_gbr = pd.distance_formula(actual[i, 0], actual[i, 1],
                                        prediction_gbr[i, 0],
                                        prediction_gbr[i, 1])
        distance_error_gbr.append(error_gbr)

    for i in range(len(prediction_mlp)):
        error_mlp = pd.distance_formula(actual[i, 0], actual[i, 1],
                                        prediction_mlp[i, 0],
                                        prediction_mlp[i, 1])
        distance_error_mlp.append(error_mlp)

    for i in range(len(prediction_rfr)):
        error_rfr = pd.distance_formula(actual[i, 0], actual[i, 1],
                                        prediction_rfr[i, 0],
                                        prediction_rfr[i, 1])
        distance_error_rfr.append(error_rfr)

    plt.figure(figsize=(10, 7))
    n0, bins0, patches0 = plt.hist(distance_error_gbr,
                                   10,
                                   normed=True,
                                   facecolor='green',
                                   edgecolor='black',
                                   alpha=0.4,
                                   label='GBR')
    n1, bins1, patches1 = plt.hist(distance_error_mlp,
                                   10,
                                   normed=True,
                                   facecolor='blue',
                                   edgecolor='black',
                                   alpha=0.4,
                                   label='MLP')
    n2, bin2, patches2 = plt.hist(distance_error_rfr,
                                  10,
                                  normed=True,
                                  facecolor='red',
                                  edgecolor='black',
                                  alpha=0.4,
                                  label='RFR')
    y0 = chi.pdf(bins0, 2)
    y1 = chi.pdf(bins1, 2)
    y2 = chi.pdf(bin2, 2)
    plt.plot(bins0, y0, 'g--', linewidth=4)
    plt.plot(bins1, y1, 'b-.', linewidth=4)
    plt.plot(bin2, y2, 'r:', linewidth=4)
    plt.legend(loc='best')
    plt.xlabel(r'distance: $\sqrt{(x_p-x)^2 + (y_p-y})^2}$')
    plt.title("Prediction Error")
    plt.show()
Exemple #4
0
def art_qi2(img, airmask, ncoils=12, erodemask=True):
    """
    Calculates **qi2**, the distance between the distribution
    of noise voxel (non-artifact background voxels) intensities, and a
    centered Chi distribution.

    :param numpy.ndarray img: input data
    :param numpy.ndarray airmask: input air mask without artifacts

    """
    from matplotlib import rc
    import seaborn as sn
    import matplotlib.pyplot as plt
    rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
    # rc('text', usetex=True)

    if erodemask:
        struc = nd.generate_binary_structure(3, 2)
        # Perform an opening operation on the background data.
        airmask = nd.binary_erosion(airmask, structure=struc).astype(np.uint8)

    # Artifact-free air region
    data = img[airmask > 0]
    data = data[data < np.percentile(data, 99.5)]
    maxvalue = int(data.max())
    nbins = maxvalue if maxvalue < 100 else 100

    # Estimate data pdf
    hist, bin_edges = np.histogram(data, density=True, bins=nbins)
    bin_centers = [np.mean(bin_edges[i:i+1]) for i in range(len(bin_edges)-1)]
    max_pos = np.argmax(hist)

    # Fit central chi distribution
    param = chi.fit(data, 2*ncoils, loc=bin_centers[max_pos])
    pdf_fitted = chi.pdf(bin_centers, *param[:-2], loc=param[-2], scale=param[-1])

    # Write out figure of the fitting
    out_file = op.abspath('background_fit.png')
    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    sn.distplot(data, bins=nbins, norm_hist=True, kde=False, ax=ax1)
    #_, bins, _ = ax1.hist(data, nbins, normed=True, color='gray', linewidth=0)
    ax1.plot(bin_centers, pdf_fitted, 'k--', linewidth=1.2)
    fig.suptitle('Noise distribution on the air mask, and fitted chi distribution')
    ax1.set_xlabel('Intensity')
    ax1.set_ylabel('Frequency')
    fig.savefig(out_file, format='png', dpi=300)
    plt.close()

    # Find t2 (intensity at half width, right side)
    ihw = 0.5 * hist[max_pos]
    t2idx = 0
    for i in range(max_pos + 1, len(bin_centers)):
        if hist[i] < ihw:
            t2idx = i
            break

    # Compute goodness-of-fit (gof)
    return (float(np.abs(hist[t2idx:] - pdf_fitted[t2idx:]).sum() /
                  len(pdf_fitted[t2idx:])), out_file)
Exemple #5
0
 def pdf(self, A, fNL):
     """
     for power asymmetry amplitude A as the variable, and fNL as the parameter
     the pdf is a Maxwell distribution
     """
     if (fNL>=0.0):
         return chi.pdf(A, 3, scale=np.sqrt((self.A1const*fNL)**2.0+self.sigmaG**2.0))
     else:
         return 0.0
def spectra_error(param, args=()):
    #args = (F_model,F_noise,k,F_obs)
    args_theo = args[:-1]
    F_obs = args[-1]
    k_1 = args[-2]
    param_chi = param[-1]
    param_theo = param[:-2]
    F_theo = spectra_theo(param_theo, args=args_theo)
    #Chi-squared error
    F_obs_f = F_obs * k_1**param[-2]
    error = param_chi * F_obs_f / F_theo
    return chi.pdf(error, param_chi)
Exemple #7
0
 def pdf(self, A, fNL):
     """
     for power asymmetry amplitude A as the variable, and fNL as the parameter
     the pdf is a Maxwell distribution
     """
     if (fNL >= 0.0):
         return chi.pdf(A,
                        3,
                        scale=np.sqrt((self.A1const * fNL)**2.0 +
                                      self.sigmaG**2.0))
     else:
         return 0.0
Exemple #8
0
    def test_chi(self):
        from scipy.stats import chi
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(1, 1)

        df = 78
        mean, var, skew, kurt = chi.stats(df, moments='mvsk')

        x = np.linspace(chi.ppf(0.01, df), chi.ppf(0.99, df), 100)
        ax.plot(x, chi.pdf(x, df), 'r-', lw=5, alpha=0.6, label='chi pdf')

        rv = chi(df)
        ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

        vals = chi.ppf([0.001, 0.5, 0.999], df)
        np.allclose([0.001, 0.5, 0.999], chi.cdf(vals, df))

        r = chi.rvs(df, size=1000)

        ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
        ax.legend(loc='best', frameon=False)
        self.assertEqual(str(ax), "AxesSubplot(0.125,0.11;0.775x0.77)")
Exemple #9
0
def art_qi2(img, airmask, artmask, ncoils=1):
    """
    Calculates **qi2**, the distance between the distribution
    of noise voxel (non-artifact background voxels) intensities, and a
    centered Chi distribution.

    :param numpy.ndarray img: input data
    :param numpy.ndarray airmask: input air mask without artifacts

    """

    # Artifact-free air region
    data = img[airmask > 0]
    # Estimate data pdf
    hist, bin_edges = np.histogram(data, density=True, bins=128)
    bin_centers = [
        np.mean(bin_edges[i:i + 1]) for i in range(len(bin_edges) - 1)
    ]
    max_pos = np.argmax(hist)

    # Fit central chi distribution
    param = chi.fit(data, 2 * ncoils, loc=bin_centers[max_pos])
    pdf_fitted = chi.pdf(bin_centers,
                         *param[:-2],
                         loc=param[-2],
                         scale=param[-1])

    # Find t2 (intensity at half width, right side)
    ihw = 0.5 * hist[max_pos]
    t2idx = 0
    for i in range(max_pos + 1, len(bin_centers)):
        if hist[i] < ihw:
            t2idx = i
            break

    # Compute goodness-of-fit (gof)
    gof = np.abs(hist[t2idx:] - pdf_fitted[t2idx:]).sum() / airmask.sum()
    return float(art_qi1(airmask, artmask) + gof)
Exemple #10
0
    def _pdf_notTruncated(self, z, dps):
        scale = self._scale
        k = self._k
        dps = self._dps

        return chi.pdf(z/scale, k)
Exemple #11
0
def art_qi2(img,
            airmask,
            ncoils=12,
            erodemask=True,
            out_file='qi2_fitting.txt',
            min_voxels=1e3):
    r"""
    Calculates :math:`\text{QI}_2`, based on the goodness-of-fit of a centered
    :math:`\chi^2` distribution onto the intensity distribution of
    non-artifactual background (within the "hat" mask):


    .. math ::

        \chi^2_n = \frac{2}{(\sigma \sqrt{2})^{2n} \, (n - 1)!}x^{2n - 1}\, e^{-\frac{x}{2}}

    where :math:`n` is the number of coil elements.

    :param numpy.ndarray img: input data
    :param numpy.ndarray airmask: input air mask without artifacts

    """
    out_file = op.abspath(out_file)
    open(out_file, 'a').close()

    if erodemask:
        struc = nd.generate_binary_structure(3, 2)
        # Perform an opening operation on the background data.
        airmask = nd.binary_erosion(airmask, structure=struc).astype(np.uint8)

    # Artifact-free air region
    data = img[airmask > 0]

    # Background can only be fit if we have a min number of voxels
    if len(data[data > 0]) < min_voxels:
        return 0.0, out_file

    # Estimate data pdf
    dmax = np.percentile(data[data > 0], 99.9)
    hist, bin_edges = np.histogram(data[data > 0],
                                   density=True,
                                   range=(0.0, dmax),
                                   bins='doane')
    bin_centers = [
        float(np.mean(bin_edges[i:i + 1])) for i in range(len(bin_edges) - 1)
    ]
    max_pos = np.argmax(hist)
    json_out = {'x': bin_centers, 'y': [float(v) for v in hist]}

    # Fit central chi distribution
    param = chi.fit(data[data > 0], 2 * ncoils, loc=bin_centers[max_pos])
    pdf_fitted = chi.pdf(bin_centers,
                         *param[:-2],
                         loc=param[-2],
                         scale=param[-1])
    json_out['y_hat'] = [float(v) for v in pdf_fitted]

    # Find t2 (intensity at half width, right side)
    ihw = 0.5 * hist[max_pos]
    t2idx = 0
    for i in range(max_pos + 1, len(bin_centers)):
        if hist[i] < ihw:
            t2idx = i
            break

    json_out['x_cutoff'] = float(bin_centers[t2idx])

    # Compute goodness-of-fit (gof)
    gof = float(
        np.abs(hist[t2idx:] - pdf_fitted[t2idx:]).sum() /
        len(pdf_fitted[t2idx:]))

    # Clip values for sanity
    gof = 1.0 if gof > 1.0 else gof
    gof = 0.0 if gof < 0.0 else gof
    json_out['gof'] = gof

    with open(out_file, 'w' if PY3 else 'wb') as ofd:
        json.dump(json_out, ofd)

    return gof, out_file
Exemple #12
0
def ipe_errors():
	#T = fits_table('ipe1_dstn.fit')
	#T.cut((T.ra < 249.85) * (T.dec < 17.65))
	#print 'Cut to', len(T)

	ps = PlotSequence('ipe')

	#T = fits_table('ipe2_dstn_1.fit')
	T = fits_table('ipe3_dstn_2.fit')
	print len(T), 'objects'

	print 'Runs', np.unique(T.run)
	print 'Camcols', np.unique(T.camcol)
	print 'Fields', np.unique(T.field)

	T1 = T[T.run == 5183]
	T2 = T[T.run == 5224]

	plt.clf()
	plt.plot(T1.ra, T1.dec, 'r.', alpha=0.1)
	plt.plot(T2.ra, T2.dec, 'bx', alpha=0.1)
	ps.savefig()

	for T in [T1,T2]:
		# self-matches:
		print 'T:', len(T)
		R = 0.5 / 3600.
		I,J,d = match_radec(T.ra, T.dec, T.ra, T.dec, R, notself=True)
		print len(I), 'matches'
		K = (I < J)
		I = I[K]
		J = J[K]
		print len(I), 'symmetric'
		print sum(T.field[I] == T.field[J]), 'are in the same field'

		#plt.clf()
		#plt.plot(T.rowc[I], T.colc[I], 'r.')
		#plt.plot(T.rowc[J], T.colc[J], 'b.')
		#plt.savefig('ipe2.png')

		keep = np.ones(len(T), bool)
		keep[I[T.field[I] != T.field[J]]] = False

		T.cut(keep)
		print 'Cut to', len(T), 'with no matches in other fields'


	R = 1./3600.

	I,J,d = match_radec(T1.ra, T1.dec, T2.ra, T2.dec, R)
	print len(I), 'matches'

	dra = (T1.ra[I] - T2.ra[J])*np.cos(np.deg2rad(T1.dec[I])) * 3600.
	ddec = (T1.dec[I] - T2.dec[J]) * 3600.

	#plt.clf()
	#loghist(dra, ddec, 100, range=((-1,1),(-1,1)))
	#ps.savefig()

	print 'Range of Decs:', T1.dec.min(), T1.dec.max(), T2.dec.min(), T2.dec.max()
	ras = np.cos(np.deg2rad(np.append(T1.dec, T2.dec)))
	print 'Range of RAscales:', ras.min(), ras.max()

	rascale = np.mean(ras)

	X1 = np.vstack((T1.ra * rascale, T1.dec)).T
	X2 = np.vstack((T2.ra * rascale, T2.dec)).T
	inds,d = nearest(X1, X2, R)
	J = np.flatnonzero(inds > -1)
	I = inds[J]
	print 'Nearest-neighbour matches:', len(I)
	d = np.sqrt(d[J])
	print 'd', d.shape
	print 'I,J', len(I), len(J)
	print 'd max', np.max(d), 'min', np.min(d)
	print 'R', R
	assert(np.all(d <= R))
	assert(np.all(J >= 0))
	assert(np.all(I >= 0))

	dx = X1[I] - X2[J]
	print 'dx', dx.shape
	dr = np.hypot(dx[:,0], dx[:,1])
	print 'dr', dr.shape
	assert(np.all(dr <= R))

	dra	 = (T1.ra [I] - T2.ra [J]) * rascale * 3600.
	ddec = (T1.dec[I] - T2.dec[J]) * 3600.

	plt.clf()
	loghist(dra, ddec, 100, range=((-1,1),(-1,1)))
	ps.savefig()

	M1 = T1[I]
	M2 = T2[J]

	#print 'All T1', T1.rowc.min(), T1.rowc.max(), T1.colc.min(), T1.colc.max()
	#print 'Matched T1', T1.rowc[I].min(), T1.rowc[I].max(), T1.colc[I].min(), T1.colc[I].max()
	#print 'All T2', T2.rowc.min(), T2.rowc.max(), T2.colc.min(), T2.colc.max()
	#print 'Matched T2', T2.rowc[J].min(), T2.rowc[J].max(), T2.colc[J].min(), T2.colc[J].max()

	# Errors are in arcsec.
	rerr1 = M1.raerr
	derr1 = M1.decerr
	rerr2 = M2.raerr
	derr2 = M2.decerr

	hi = 6.
	dscale = 1./np.sqrt(2.)
	plt.clf()
	n,b,p = plt.hist(dscale * np.hypot(dra, ddec) / np.hypot(rerr1, derr1), 100,
					 range=(0, hi), histtype='step', color='r')
	plt.hist(dscale * np.hypot(dra, ddec) / np.hypot(rerr2, derr2), 100,
			 range=(0, hi), histtype='step', color='b')
	xx = np.linspace(0, hi, 500)
	from scipy.stats import chi
	yy = chi.pdf(xx, 2)
	plt.plot(xx, yy * len(dra) * (b[1]-b[0]), 'k-')
	plt.xlim(0,hi)
	plt.xlabel('N sigma of RA,Dec repeat observations')
	plt.ylabel('Number of sources')
	ps.savefig()

	#loghist(np.hypot(dra, ddec), np.sqrt(np.hypot(rerr1, derr1) * np.hypot(rerr2, derr2)), 100,
	#		clamp=((0,1),(0,1)))
	loghist(np.hypot(dra, ddec), (np.hypot(rerr1, derr1) + np.hypot(rerr2, derr2)) / 2., 100, range=((0,1),(0,1)), clamp=True)
	plt.xlabel('Inter-ipe difference: RA,Dec (arcsec)')
	plt.ylabel('Photo errors: RA,Dec (arcsec)')
	ps.savefig()

	loghist(np.log10(np.hypot(dra, ddec)), np.log10((np.hypot(rerr1, derr1) + np.hypot(rerr2, derr2)) / 2.),
			100, range=((-3,0),(-3,0)), clamp=True)
	plt.xlabel('Inter-ipe difference: log RA,Dec (arcsec)')
	plt.ylabel('Photo errors: log RA,Dec (arcsec)')
	ps.savefig()

	plt.clf()
	n,b,p = plt.hist(dscale * np.abs(M1.psfmag_r - M2.psfmag_r) / M1.psfmagerr_r, 100, range=(0,hi), histtype='step', color='r')
	plt.xlabel('N sigma of psfmag_r')
	xx = np.linspace(0, hi, 500)
	yy = 2./np.sqrt(2.*np.pi)*np.exp(-0.5 * xx**2)
	print 'yy', sum(yy)
	plt.plot(xx, yy * len(M1) * (b[1]-b[0]), 'k-')
	ps.savefig()

	# Galaxy-star matches
	K1 = (M1.type == 3) * (M2.type == 6)
	K2 = (M1.type == 6) * (M2.type == 3)
	G = merge_tables((M1[K1], M2[K2]))
	S = merge_tables((M2[K1], M1[K2]))
	print 'G types:', np.unique(G.type)
	print 'S types:', np.unique(S.type)
	mhi,mlo = 24,10
	K = ((G.modelmag_r < mhi) * (S.psfmag_r < mhi) *
		 (G.modelmag_r > mlo) * (S.psfmag_r > mlo))
	print 'Star/gal mismatches with good mags:', np.sum(K)

	# gm = G.modelmag_r.copy()
	# gm[np.logical_or(gm > mhi, gm < mlo)] = 25.
	# sm = S.psfmag_r.copy()
	# sm[np.logical_or(sm > mhi, sm < mlo)] = 25.
	# 
	# #loghist(G.modelmag_r[K], S.psfmag_r[K], 100)
	# loghist(gm, sm, 100)

	loghist(G.modelmag_r, S.psfmag_r, clamp=((mlo,mhi),(mlo,mhi)),
			clamp_to=((mlo-1,mhi+1),(mlo-1,mhi+1)))
	ax = plt.axis()
	plt.axhline(mhi, color='b')
	plt.axvline(mhi, color='b')
	plt.plot(*([  [min(ax[0],ax[2]), max(ax[1],ax[3])] ]*2) + ['b-',])
	plt.axis(ax)
	plt.xlabel('Galaxy modelmag_r')
	plt.ylabel('Star psfmag_r')
	plt.title('Star/Galaxy ipe mismatches')
	ps.savefig()

	K = ((G.modelmag_r < mhi) * (G.modelmag_r > mlo))
	plt.clf()
	KK = (G.fracdev_r < 0.5)
	kwargs = dict(bins=100, range=(np.log10(0.01), np.log10(30.)), histtype='step')
	plt.hist(np.log10(G.exprad_r[K * KK]), color='r', **kwargs)
	KK = (G.fracdev_r >= 0.5)
	plt.hist(np.log10(G.devrad_r[K * KK]), color='b', **kwargs)
	plt.xlabel('*rad_r (arcsec)')
	loc,lab = plt.xticks()
	plt.xticks(loc, ['%g' % (10.**x) for x in loc])
	plt.title('Star/Galaxy ipe mismatches')
	ps.savefig()



	# Pairs where both are galaxies
	K = ((M1.type == 3) * (M2.type == 3))
	G1 = M1[K]
	G2 = M2[K]
	print len(G1), 'pairs where both are galaxies'
	
	#for 
	plt.clf()
	c,cerr = 'modelmag_r', 'modelmagerr_r'
	n,b,p = plt.hist(dscale * np.abs(G1.get(c) - G2.get(c)) / G1.get(cerr), 100, range=(0,hi),
					 histtype='step', color='r')
	plt.xlabel('N sigma of ' + c)
	yy = np.exp(-0.5 * b**2)
	yy *= sum(n) / np.sum(yy)
	plt.plot(b, yy, 'k-')
	ps.savefig()

	loghist(np.abs(G1.get(c) - G2.get(c)), G1.get(cerr), 100, range=((0,2),(0,2)), clamp=True)
	plt.xlabel('Inter-ipe difference: ' + c)
	plt.ylabel('Photo error: ' + cerr)
	ps.savefig()

	loghist(np.log10(np.abs(G1.get(c) - G2.get(c))), np.log10(G1.get(cerr)), 100, range=((-3,1),(-3,1)), clamp=True)
	plt.xlabel('Inter-ipe difference: ' + c)
	plt.ylabel('Photo error: ' + cerr)
	ps.savefig()

	plt.clf()
	loghist(G1.fracdev_r, G2.fracdev_r, 100, range=((0,1),(0,1)), clamp=True)
	plt.xlabel('G1 fracdev_r')
	plt.ylabel('G2 fracdev_r')
	ps.savefig()

	dscale = 1.

	I = (G1.fracdev_r < 0.5) * (G2.fracdev_r < 0.5)
	print sum(I), 'of', len(G1), 'both have fracdev_r < 0.5'
	E1 = G1[I]
	E2 = G2[I]

	I = (G1.fracdev_r >= 0.5) * (G2.fracdev_r >= 0.5)
	print sum(I), 'of', len(G1), 'both have fracdev_r >= 0.5'
	D1 = G1[I]
	D2 = G2[I]

	for t,H1,H2 in [('exp',E1,E2),('dev',D1,D2)]:

		c,cerr = '%smag_r'%t, '%smagerr_r'%t
		dval = np.abs(H1.get(c) - H2.get(c))
		derr = H1.get(cerr)
		rng = ((0,1),(0,1))

		loghist(dval, derr, 100, range=rng, clamp=True)
		plt.xlabel('Inter-ipe difference: ' + c)
		plt.ylabel('Photo error: ' + cerr)
		ps.savefig()

		loghist(np.log10(dval), np.log10(derr), 100, range=((-3,0),(-3,0)), clamp=True)
		plt.xlabel('Inter-ipe difference: log ' + c)
		plt.ylabel('Photo error: log ' + cerr)
		ps.savefig()

		c,cerr = '%sab_r'%t,  '%saberr_r'%t
		dval = np.abs(H1.get(c) - H2.get(c))
		derr = H1.get(cerr)
		rng = ((0,1),(0,1))

		loghist(dval, derr, 100, range=rng, clamp=True)
		plt.xlabel('Inter-ipe difference: ' + c)
		plt.ylabel('Photo error: ' + cerr)
		ps.savefig()

		loghist(np.log10(dval), np.log10(derr), 100, range=((-3,0),(-3,0)), clamp=True)
		plt.xlabel('Inter-ipe difference: log ' + c)
		plt.ylabel('Photo error: log ' + cerr)
		ps.savefig()

		c,cerr = '%srad_r'%t, '%sraderr_r'%t
		dval = np.abs(H1.get(c) - H2.get(c))
		derr = H1.get(cerr)
		rng = ((0,30),(0,30))

		loghist(dval, derr, 100, range=rng, clamp=True)
		plt.xlabel('Inter-ipe difference: ' + c)
		plt.ylabel('Photo error: ' + cerr)
		ps.savefig()

		loghist(np.log10(dval), np.log10(derr), 100, range=((-2,2),(-2,2)), clamp=True)
		plt.xlabel('Inter-ipe difference: log ' + c)
		plt.ylabel('Photo error: log ' + cerr)
		ps.savefig()


	return






	
	I,J,d = match_radec(T.ra, T.dec, T.ra, T.dec, 0.5/3600., notself=True)
	print len(I), 'matches'

	plt.clf()
	loghist((T.ra[I] - T.ra[J])*np.cos(np.deg2rad(T.dec[I])) * 3600.,
			(T.dec[I] - T.dec[J])*3600., 100, range=((-1,1),(-1,1)))
	plt.savefig('ipe4.png')


	K = (I < J)
	I = I[K]
	J = J[K]
	d = d[K]
	print 'Cut to', len(I), 'symmetric'
	
	plt.clf()
	plt.plot(T.ra, T.dec, 'r.')
	plt.plot(T.ra[I], T.dec[I], 'bo', mec='b', mfc='none')
	plt.savefig('ipe2.png')

	dra,ddec = [],[]
	raerr,decerr = [],[]
	RC = T.run * 10 + T.camcol
	RCF = T.run * 10 * 1000 + T.camcol * 1000 + T.field
	for i in np.unique(I):
		K = (I == i)
		JJ = J[K]
		print
		print 'Source', i, 'has', len(JJ), 'matches'
		print '	 ', np.sum(RC[JJ] == RC[i]), 'in the same run/camcol'
		print '	 ', np.sum(RCF[JJ] == RCF[i]), 'in the same run/camcol/field'
		orc = (RC[JJ] != RC[i])
		print '	 ', np.sum(orc), 'are in other run/camcols'
		print '	 ', len(np.unique(RC[JJ][orc])), 'unique other run/camcols'
		print '	 ', len(np.unique(RCF[JJ][orc])), 'unique other run/camcols/fields'
		print '	 other sources:', JJ
		dra.extend((T.ra[JJ] - T.ra[i]) * np.cos(np.deg2rad(T.dec[i])))
		ddec.extend(T.dec[JJ] - T.dec[i])
		raerr.extend ([T.raerr [i]] * len(JJ))
		decerr.extend([T.decerr[i]] * len(JJ))

	dra,ddec = np.array(dra), np.array(ddec)
	raerr,decerr = np.array(raerr), np.array(decerr)

	plt.clf()
	plt.hist(np.hypot(dra,ddec) / np.hypot(raerr,decerr), 100)
	plt.savefig('ipe3.png')
Exemple #13
0
    cdf = chi.cdf(r_grid, df=k)
    bin_prob = np.diff(cdf)
    return bin_prob


n = 10000
eps_mass = 0.001

k1 = 2
k2 = 100

r_grid1 = get_r_grid(k1, n, get_r_max(k1, eps_mass))
r_grid2 = get_r_grid(k2, n, get_r_max(k2, eps_mass))

bin_prob = get_bin_prob(k2, r_grid2)
chi_pdf = chi.pdf(r_grid2[:-1], df=k2)

r_grid2B = r_grid1**(float(k1) / k2)
c = r_grid2[-1] / r_grid2B[-1]

import matplotlib.pyplot as plt  # noqa: E402, mpl gives no other choice :(

plt.plot(r_grid2[:-1], bin_prob / np.diff(r_grid2), 'b.-')
plt.plot(r_grid2[:-1], chi_pdf, 'r.-')

plt.figure()
plt.plot(r_grid1[:-1], bin_prob / np.diff(r_grid1), 'b.-')
chi_pdf = chi.pdf(c * r_grid1[:-1]**(float(k1) / k2), df=k2)
plt.plot(r_grid1[:-1], chi_pdf * (np.diff(r_grid2) / np.diff(r_grid1)), 'r.-')

#x = np.arange(0,len(r_grid2))
from scipy.stats import chi
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)

# Calculate a few first moments:

df = 78
mean, var, skew, kurt = chi.stats(df, moments='mvsk')

# Display the probability density function (``pdf``):

x = np.linspace(chi.ppf(0.01, df), chi.ppf(0.99, df), 100)
ax.plot(x, chi.pdf(x, df), 'r-', lw=5, alpha=0.6, label='chi pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = chi(df)
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = chi.ppf([0.001, 0.5, 0.999], df)
np.allclose([0.001, 0.5, 0.999], chi.cdf(vals, df))
# True

# Generate random numbers:
Exemple #15
0
def art_qi2(img, airmask, ncoils=12, erodemask=True,
            out_file='qi2_fitting.txt', min_voxels=1e3):
    r"""
    Calculates :math:`\text{QI}_2`, based on the goodness-of-fit of a centered
    :math:`\chi^2` distribution onto the intensity distribution of
    non-artifactual background (within the "hat" mask):


    .. math ::

        \chi^2_n = \frac{2}{(\sigma \sqrt{2})^{2n} \, (n - 1)!}x^{2n - 1}\, e^{-\frac{x}{2}}

    where :math:`n` is the number of coil elements.

    :param numpy.ndarray img: input data
    :param numpy.ndarray airmask: input air mask without artifacts

    """
    out_file = op.abspath(out_file)
    open(out_file, 'a').close()

    if erodemask:
        struc = nd.generate_binary_structure(3, 2)
        # Perform an opening operation on the background data.
        airmask = nd.binary_erosion(airmask, structure=struc).astype(np.uint8)

    # Artifact-free air region
    data = img[airmask > 0]

    # Background can only be fit if we have a min number of voxels
    if len(data[data > 0]) < min_voxels:
        return 0.0, out_file

    # Estimate data pdf
    dmax = np.percentile(data[data > 0], 99.9)
    hist, bin_edges = np.histogram(data[data > 0], density=True,
                                   range=(0.0, dmax), bins='doane')
    bin_centers = [float(np.mean(bin_edges[i:i+1])) for i in range(len(bin_edges)-1)]
    max_pos = np.argmax(hist)
    json_out = {
        'x': bin_centers,
        'y': [float(v) for v in hist]
    }

    # Fit central chi distribution
    param = chi.fit(data[data > 0], 2*ncoils, loc=bin_centers[max_pos])
    pdf_fitted = chi.pdf(bin_centers, *param[:-2], loc=param[-2], scale=param[-1])
    json_out['y_hat'] = [float(v) for v in pdf_fitted]

    # Find t2 (intensity at half width, right side)
    ihw = 0.5 * hist[max_pos]
    t2idx = 0
    for i in range(max_pos + 1, len(bin_centers)):
        if hist[i] < ihw:
            t2idx = i
            break

    json_out['x_cutoff'] = float(bin_centers[t2idx])

    # Compute goodness-of-fit (gof)
    gof = float(np.abs(hist[t2idx:] - pdf_fitted[t2idx:]).sum() / len(pdf_fitted[t2idx:]))

    # Clip values for sanity
    gof = 1.0 if gof > 1.0 else gof
    gof = 0.0 if gof < 0.0 else gof
    json_out['gof'] = gof

    with open(out_file, 'w' if PY3 else 'wb') as ofd:
        json.dump(json_out, ofd)

    return gof, out_file
Exemple #16
0
def ipe_errors():
    #T = fits_table('ipe1_dstn.fit')
    #T.cut((T.ra < 249.85) * (T.dec < 17.65))
    #print 'Cut to', len(T)

    ps = PlotSequence('ipe')

    #T = fits_table('ipe2_dstn_1.fit')
    T = fits_table('ipe3_dstn_2.fit')
    print len(T), 'objects'

    print 'Runs', np.unique(T.run)
    print 'Camcols', np.unique(T.camcol)
    print 'Fields', np.unique(T.field)

    T1 = T[T.run == 5183]
    T2 = T[T.run == 5224]

    plt.clf()
    plt.plot(T1.ra, T1.dec, 'r.', alpha=0.1)
    plt.plot(T2.ra, T2.dec, 'bx', alpha=0.1)
    ps.savefig()

    for T in [T1, T2]:
        # self-matches:
        print 'T:', len(T)
        R = 0.5 / 3600.
        I, J, d = match_radec(T.ra, T.dec, T.ra, T.dec, R, notself=True)
        print len(I), 'matches'
        K = (I < J)
        I = I[K]
        J = J[K]
        print len(I), 'symmetric'
        print sum(T.field[I] == T.field[J]), 'are in the same field'

        #plt.clf()
        #plt.plot(T.rowc[I], T.colc[I], 'r.')
        #plt.plot(T.rowc[J], T.colc[J], 'b.')
        #plt.savefig('ipe2.png')

        keep = np.ones(len(T), bool)
        keep[I[T.field[I] != T.field[J]]] = False

        T.cut(keep)
        print 'Cut to', len(T), 'with no matches in other fields'

    R = 1. / 3600.

    I, J, d = match_radec(T1.ra, T1.dec, T2.ra, T2.dec, R)
    print len(I), 'matches'

    dra = (T1.ra[I] - T2.ra[J]) * np.cos(np.deg2rad(T1.dec[I])) * 3600.
    ddec = (T1.dec[I] - T2.dec[J]) * 3600.

    #plt.clf()
    #loghist(dra, ddec, 100, range=((-1,1),(-1,1)))
    #ps.savefig()

    print 'Range of Decs:', T1.dec.min(), T1.dec.max(), T2.dec.min(
    ), T2.dec.max()
    ras = np.cos(np.deg2rad(np.append(T1.dec, T2.dec)))
    print 'Range of RAscales:', ras.min(), ras.max()

    rascale = np.mean(ras)

    X1 = np.vstack((T1.ra * rascale, T1.dec)).T
    X2 = np.vstack((T2.ra * rascale, T2.dec)).T
    inds, d = nearest(X1, X2, R)
    J = np.flatnonzero(inds > -1)
    I = inds[J]
    print 'Nearest-neighbour matches:', len(I)
    d = np.sqrt(d[J])
    print 'd', d.shape
    print 'I,J', len(I), len(J)
    print 'd max', np.max(d), 'min', np.min(d)
    print 'R', R
    assert (np.all(d <= R))
    assert (np.all(J >= 0))
    assert (np.all(I >= 0))

    dx = X1[I] - X2[J]
    print 'dx', dx.shape
    dr = np.hypot(dx[:, 0], dx[:, 1])
    print 'dr', dr.shape
    assert (np.all(dr <= R))

    dra = (T1.ra[I] - T2.ra[J]) * rascale * 3600.
    ddec = (T1.dec[I] - T2.dec[J]) * 3600.

    plt.clf()
    loghist(dra, ddec, 100, range=((-1, 1), (-1, 1)))
    ps.savefig()

    M1 = T1[I]
    M2 = T2[J]

    #print 'All T1', T1.rowc.min(), T1.rowc.max(), T1.colc.min(), T1.colc.max()
    #print 'Matched T1', T1.rowc[I].min(), T1.rowc[I].max(), T1.colc[I].min(), T1.colc[I].max()
    #print 'All T2', T2.rowc.min(), T2.rowc.max(), T2.colc.min(), T2.colc.max()
    #print 'Matched T2', T2.rowc[J].min(), T2.rowc[J].max(), T2.colc[J].min(), T2.colc[J].max()

    # Errors are in arcsec.
    rerr1 = M1.raerr
    derr1 = M1.decerr
    rerr2 = M2.raerr
    derr2 = M2.decerr

    hi = 6.
    dscale = 1. / np.sqrt(2.)
    plt.clf()
    n, b, p = plt.hist(dscale * np.hypot(dra, ddec) / np.hypot(rerr1, derr1),
                       100,
                       range=(0, hi),
                       histtype='step',
                       color='r')
    plt.hist(dscale * np.hypot(dra, ddec) / np.hypot(rerr2, derr2),
             100,
             range=(0, hi),
             histtype='step',
             color='b')
    xx = np.linspace(0, hi, 500)
    from scipy.stats import chi
    yy = chi.pdf(xx, 2)
    plt.plot(xx, yy * len(dra) * (b[1] - b[0]), 'k-')
    plt.xlim(0, hi)
    plt.xlabel('N sigma of RA,Dec repeat observations')
    plt.ylabel('Number of sources')
    ps.savefig()

    #loghist(np.hypot(dra, ddec), np.sqrt(np.hypot(rerr1, derr1) * np.hypot(rerr2, derr2)), 100,
    #		clamp=((0,1),(0,1)))
    loghist(np.hypot(dra, ddec),
            (np.hypot(rerr1, derr1) + np.hypot(rerr2, derr2)) / 2.,
            100,
            range=((0, 1), (0, 1)),
            clamp=True)
    plt.xlabel('Inter-ipe difference: RA,Dec (arcsec)')
    plt.ylabel('Photo errors: RA,Dec (arcsec)')
    ps.savefig()

    loghist(np.log10(np.hypot(dra, ddec)),
            np.log10((np.hypot(rerr1, derr1) + np.hypot(rerr2, derr2)) / 2.),
            100,
            range=((-3, 0), (-3, 0)),
            clamp=True)
    plt.xlabel('Inter-ipe difference: log RA,Dec (arcsec)')
    plt.ylabel('Photo errors: log RA,Dec (arcsec)')
    ps.savefig()

    plt.clf()
    n, b, p = plt.hist(dscale * np.abs(M1.psfmag_r - M2.psfmag_r) /
                       M1.psfmagerr_r,
                       100,
                       range=(0, hi),
                       histtype='step',
                       color='r')
    plt.xlabel('N sigma of psfmag_r')
    xx = np.linspace(0, hi, 500)
    yy = 2. / np.sqrt(2. * np.pi) * np.exp(-0.5 * xx**2)
    print 'yy', sum(yy)
    plt.plot(xx, yy * len(M1) * (b[1] - b[0]), 'k-')
    ps.savefig()

    # Galaxy-star matches
    K1 = (M1.type == 3) * (M2.type == 6)
    K2 = (M1.type == 6) * (M2.type == 3)
    G = merge_tables((M1[K1], M2[K2]))
    S = merge_tables((M2[K1], M1[K2]))
    print 'G types:', np.unique(G.type)
    print 'S types:', np.unique(S.type)
    mhi, mlo = 24, 10
    K = ((G.modelmag_r < mhi) * (S.psfmag_r < mhi) * (G.modelmag_r > mlo) *
         (S.psfmag_r > mlo))
    print 'Star/gal mismatches with good mags:', np.sum(K)

    # gm = G.modelmag_r.copy()
    # gm[np.logical_or(gm > mhi, gm < mlo)] = 25.
    # sm = S.psfmag_r.copy()
    # sm[np.logical_or(sm > mhi, sm < mlo)] = 25.
    #
    # #loghist(G.modelmag_r[K], S.psfmag_r[K], 100)
    # loghist(gm, sm, 100)

    loghist(G.modelmag_r,
            S.psfmag_r,
            clamp=((mlo, mhi), (mlo, mhi)),
            clamp_to=((mlo - 1, mhi + 1), (mlo - 1, mhi + 1)))
    ax = plt.axis()
    plt.axhline(mhi, color='b')
    plt.axvline(mhi, color='b')
    plt.plot(*([[min(ax[0], ax[2]), max(ax[1], ax[3])]] * 2) + [
        'b-',
    ])
    plt.axis(ax)
    plt.xlabel('Galaxy modelmag_r')
    plt.ylabel('Star psfmag_r')
    plt.title('Star/Galaxy ipe mismatches')
    ps.savefig()

    K = ((G.modelmag_r < mhi) * (G.modelmag_r > mlo))
    plt.clf()
    KK = (G.fracdev_r < 0.5)
    kwargs = dict(bins=100,
                  range=(np.log10(0.01), np.log10(30.)),
                  histtype='step')
    plt.hist(np.log10(G.exprad_r[K * KK]), color='r', **kwargs)
    KK = (G.fracdev_r >= 0.5)
    plt.hist(np.log10(G.devrad_r[K * KK]), color='b', **kwargs)
    plt.xlabel('*rad_r (arcsec)')
    loc, lab = plt.xticks()
    plt.xticks(loc, ['%g' % (10.**x) for x in loc])
    plt.title('Star/Galaxy ipe mismatches')
    ps.savefig()

    # Pairs where both are galaxies
    K = ((M1.type == 3) * (M2.type == 3))
    G1 = M1[K]
    G2 = M2[K]
    print len(G1), 'pairs where both are galaxies'

    #for
    plt.clf()
    c, cerr = 'modelmag_r', 'modelmagerr_r'
    n, b, p = plt.hist(dscale * np.abs(G1.get(c) - G2.get(c)) / G1.get(cerr),
                       100,
                       range=(0, hi),
                       histtype='step',
                       color='r')
    plt.xlabel('N sigma of ' + c)
    yy = np.exp(-0.5 * b**2)
    yy *= sum(n) / np.sum(yy)
    plt.plot(b, yy, 'k-')
    ps.savefig()

    loghist(np.abs(G1.get(c) - G2.get(c)),
            G1.get(cerr),
            100,
            range=((0, 2), (0, 2)),
            clamp=True)
    plt.xlabel('Inter-ipe difference: ' + c)
    plt.ylabel('Photo error: ' + cerr)
    ps.savefig()

    loghist(np.log10(np.abs(G1.get(c) - G2.get(c))),
            np.log10(G1.get(cerr)),
            100,
            range=((-3, 1), (-3, 1)),
            clamp=True)
    plt.xlabel('Inter-ipe difference: ' + c)
    plt.ylabel('Photo error: ' + cerr)
    ps.savefig()

    plt.clf()
    loghist(G1.fracdev_r,
            G2.fracdev_r,
            100,
            range=((0, 1), (0, 1)),
            clamp=True)
    plt.xlabel('G1 fracdev_r')
    plt.ylabel('G2 fracdev_r')
    ps.savefig()

    dscale = 1.

    I = (G1.fracdev_r < 0.5) * (G2.fracdev_r < 0.5)
    print sum(I), 'of', len(G1), 'both have fracdev_r < 0.5'
    E1 = G1[I]
    E2 = G2[I]

    I = (G1.fracdev_r >= 0.5) * (G2.fracdev_r >= 0.5)
    print sum(I), 'of', len(G1), 'both have fracdev_r >= 0.5'
    D1 = G1[I]
    D2 = G2[I]

    for t, H1, H2 in [('exp', E1, E2), ('dev', D1, D2)]:

        c, cerr = '%smag_r' % t, '%smagerr_r' % t
        dval = np.abs(H1.get(c) - H2.get(c))
        derr = H1.get(cerr)
        rng = ((0, 1), (0, 1))

        loghist(dval, derr, 100, range=rng, clamp=True)
        plt.xlabel('Inter-ipe difference: ' + c)
        plt.ylabel('Photo error: ' + cerr)
        ps.savefig()

        loghist(np.log10(dval),
                np.log10(derr),
                100,
                range=((-3, 0), (-3, 0)),
                clamp=True)
        plt.xlabel('Inter-ipe difference: log ' + c)
        plt.ylabel('Photo error: log ' + cerr)
        ps.savefig()

        c, cerr = '%sab_r' % t, '%saberr_r' % t
        dval = np.abs(H1.get(c) - H2.get(c))
        derr = H1.get(cerr)
        rng = ((0, 1), (0, 1))

        loghist(dval, derr, 100, range=rng, clamp=True)
        plt.xlabel('Inter-ipe difference: ' + c)
        plt.ylabel('Photo error: ' + cerr)
        ps.savefig()

        loghist(np.log10(dval),
                np.log10(derr),
                100,
                range=((-3, 0), (-3, 0)),
                clamp=True)
        plt.xlabel('Inter-ipe difference: log ' + c)
        plt.ylabel('Photo error: log ' + cerr)
        ps.savefig()

        c, cerr = '%srad_r' % t, '%sraderr_r' % t
        dval = np.abs(H1.get(c) - H2.get(c))
        derr = H1.get(cerr)
        rng = ((0, 30), (0, 30))

        loghist(dval, derr, 100, range=rng, clamp=True)
        plt.xlabel('Inter-ipe difference: ' + c)
        plt.ylabel('Photo error: ' + cerr)
        ps.savefig()

        loghist(np.log10(dval),
                np.log10(derr),
                100,
                range=((-2, 2), (-2, 2)),
                clamp=True)
        plt.xlabel('Inter-ipe difference: log ' + c)
        plt.ylabel('Photo error: log ' + cerr)
        ps.savefig()

    return

    I, J, d = match_radec(T.ra, T.dec, T.ra, T.dec, 0.5 / 3600., notself=True)
    print len(I), 'matches'

    plt.clf()
    loghist((T.ra[I] - T.ra[J]) * np.cos(np.deg2rad(T.dec[I])) * 3600.,
            (T.dec[I] - T.dec[J]) * 3600.,
            100,
            range=((-1, 1), (-1, 1)))
    plt.savefig('ipe4.png')

    K = (I < J)
    I = I[K]
    J = J[K]
    d = d[K]
    print 'Cut to', len(I), 'symmetric'

    plt.clf()
    plt.plot(T.ra, T.dec, 'r.')
    plt.plot(T.ra[I], T.dec[I], 'bo', mec='b', mfc='none')
    plt.savefig('ipe2.png')

    dra, ddec = [], []
    raerr, decerr = [], []
    RC = T.run * 10 + T.camcol
    RCF = T.run * 10 * 1000 + T.camcol * 1000 + T.field
    for i in np.unique(I):
        K = (I == i)
        JJ = J[K]
        print
        print 'Source', i, 'has', len(JJ), 'matches'
        print '	 ', np.sum(RC[JJ] == RC[i]), 'in the same run/camcol'
        print '	 ', np.sum(RCF[JJ] == RCF[i]), 'in the same run/camcol/field'
        orc = (RC[JJ] != RC[i])
        print '	 ', np.sum(orc), 'are in other run/camcols'
        print '	 ', len(np.unique(RC[JJ][orc])), 'unique other run/camcols'
        print '	 ', len(np.unique(
            RCF[JJ][orc])), 'unique other run/camcols/fields'
        print '	 other sources:', JJ
        dra.extend((T.ra[JJ] - T.ra[i]) * np.cos(np.deg2rad(T.dec[i])))
        ddec.extend(T.dec[JJ] - T.dec[i])
        raerr.extend([T.raerr[i]] * len(JJ))
        decerr.extend([T.decerr[i]] * len(JJ))

    dra, ddec = np.array(dra), np.array(ddec)
    raerr, decerr = np.array(raerr), np.array(decerr)

    plt.clf()
    plt.hist(np.hypot(dra, ddec) / np.hypot(raerr, decerr), 100)
    plt.savefig('ipe3.png')
Exemple #17
0
def art_qi2(img, airmask, ncoils=12, erodemask=True, out_file='qi2_fitting.txt'):
    """
    Calculates **qi2**, the distance between the distribution
    of noise voxel (non-artifact background voxels) intensities, and a
    centered Chi distribution.

    :param numpy.ndarray img: input data
    :param numpy.ndarray airmask: input air mask without artifacts

    """
    out_file = op.abspath(out_file)
    open(out_file, 'a').close()

    if erodemask:
        struc = nd.generate_binary_structure(3, 2)
        # Perform an opening operation on the background data.
        airmask = nd.binary_erosion(airmask, structure=struc).astype(np.uint8)

    # Artifact-free air region
    data = img[airmask > 0]

    if np.all(data <= 0):
        return 0.0, out_file

    # Compute an upper bound threshold
    thresh = np.percentile(data[data > 0], 99.5)

    # If thresh is too low, for some reason there is no noise
    # in the background image (image was preprocessed, etc)
    if thresh < 1.0:
        return 0.0, out_file

    # Threshold image
    data = data[data < thresh]

    maxvalue = int(data.max())
    nbins = maxvalue if maxvalue < 100 else 100

    # Estimate data pdf
    hist, bin_edges = np.histogram(data, density=True, bins=nbins)
    bin_centers = [float(np.mean(bin_edges[i:i+1])) for i in range(len(bin_edges)-1)]
    max_pos = np.argmax(hist)
    json_out = {
        'x': bin_centers,
        'y': [float(v) for v in hist]
    }

    # Fit central chi distribution
    param = chi.fit(data, 2*ncoils, loc=bin_centers[max_pos])
    pdf_fitted = chi.pdf(bin_centers, *param[:-2], loc=param[-2], scale=param[-1])
    json_out['y_hat'] = [float(v) for v in pdf_fitted]

    # Find t2 (intensity at half width, right side)
    ihw = 0.5 * hist[max_pos]
    t2idx = 0
    for i in range(max_pos + 1, len(bin_centers)):
        if hist[i] < ihw:
            t2idx = i
            break

    json_out['x_cutoff'] = float(bin_centers[t2idx])

    # Compute goodness-of-fit (gof)
    gof = float(np.abs(hist[t2idx:] - pdf_fitted[t2idx:]).sum() / len(pdf_fitted[t2idx:]))

    # Clip values for sanity
    gof = 1.0 if gof > 1.0 else gof
    gof = 0.0 if gof < 0.0 else gof
    json_out['gof'] = gof

    with open(out_file, 'w' if PY3 else 'wb') as ofd:
        json.dump(json_out, ofd)

    return gof, out_file
Exemple #18
0
def main():
    """
    The main code - generates the training, validation and test samples
    """

    # get the command line args
    args = parser()
    np.random.seed(args.seed)
    
    # redefine things for conciseness
    Tobs = args.Tobs            # observation time
    fs = args.fsample           # sampling frequency
    dets = args.detectors       # detectors
    isnr = args.isnr            # integrated SNR
    ndet = len(dets)            # number of detectors
    N = Tobs*fs                 # the total number of time samples
    n = N // 2 + 1              # the number of frequency bins
    
    # make the psds
    psds = [gen_psd(fs,Tobs,op='AdvDesign',det=d) for d in args.detectors]
    wpsds = (2.0/fs)*np.ones((ndet,n))          # define effective PSD for whited data

    # loop over signals
    peakSNRvec = []                     # store individual detector peak SNRs
    intSNRvec = []                      # store indiviual detector integrated SNRs
    optSNRm = np.zeros(args.Nsig)       # store optimal SNR
    testSNRm = np.zeros(args.Nsig)      # store alternative optimal SNR 
    woptSNRm = np.zeros(args.Nsig)      # store optimal SNR for whitened signal
    wtestSNRm = np.zeros(args.Nsig)     # store alternative optimal SNR for whitened data
    filtSNRm = np.zeros(args.Nsig)      # store exact filter measured SNR
    nfiltSNRm = np.zeros(args.Nsig)     # store exact filter noise only measured SNR
    wfiltSNRm = np.zeros(args.Nsig)     # store exact filter measured SNR for whitened data
    wnfiltSNRm = np.zeros(args.Nsig)    # store exact filter noise only measured SNR and whitened data
    maxtsSNRm = np.zeros(args.Nsig)     # store maximised (over time) measured SNR
    nmaxtsSNRm = np.zeros(args.Nsig)    # store maximised (over time) noise only measured SNR
    wmaxtsSNRm = np.zeros(args.Nsig)    # store maximised (over time) measured SNR and whitened data
    wnmaxtsSNRm = np.zeros(args.Nsig)   # store maximised (over time) noise only measured SNR and whitenee data 
    print '{}: starting to generate data'.format(time.asctime())
    for i in xrange(args.Nsig):
    
        # generate unwhitened time-series
        sig,noise,par,hpc = gen_ts(fs,Tobs,isnr,dets)
        data = sig + noise

        # whiten data
        wdata = np.array([whiten_data(s,psd.data.data,fs) for s,psd in zip(data,psds)]).reshape(ndet,-1)
        print '{}: Whitened data variance -> {}'.format(time.asctime(),np.std(wdata[0,int(0.1*N):int(0.9*N)]))

        # whiten signal and template (ndet signals and 2 templates for +,x)
        wsig = np.array([whiten_data(s,psd.data.data,fs) for s,psd in zip(sig,psds)]).reshape(ndet,-1)
        whpc = np.array([whiten_data(h,psd.data.data,fs) for h,psd in zip(hpc,psds)]).reshape(2,-1)
        peakSNRvec.append(np.max(np.abs(wsig),axis=1))
        
        # whiten noise
        wnoise = np.array([whiten_data(s,psd.data.data,fs) for s,psd in zip(noise,psds)]).reshape(ndet,-1)
        print '{}: Whitened noise variance -> {}'.format(time.asctime(),np.std(wnoise[0,int(0.1*N):int(0.9*N)]))

        # compute optimal SNR in 2 different ways
        optSNR = np.array([get_snr(s,Tobs,fs,p.data.data) for s,p in zip(sig,psds)])
        testSNRsq = np.array([inner(s,s,Tobs,fs,p.data.data) for s,p in zip(sig,psds)])
        optSNRm[i] = np.sqrt(np.sum(optSNR**2))
        testSNRm[i] = np.sqrt(np.sum(testSNRsq))        
        intSNRvec.append(optSNR)
        print '{}: optimal multidetector SNR = {}'.format(time.asctime(),optSNRm[i])
        print '{}: optimal multidetector SNR (test) = {}'.format(time.asctime(),testSNRm[i])

        # compute optimal SNR for whitened signal
        woptSNR = np.array([get_snr(s,Tobs,fs,p) for s,p in zip(wsig,wpsds)])
        wtestSNRsq = np.array([inner(s,s,Tobs,fs,p) for s,p in zip(wsig,wpsds)])
        woptSNRm[i] = np.sqrt(np.sum(woptSNR**2))
        wtestSNRm[i] = np.sqrt(np.sum(wtestSNRsq))
        print '{}: optimal multidetector SNR (whited signal) = {}'.format(time.asctime(),woptSNRm[i])
        print '{}: optimal multidetector SNR (whitened data test) = {}'.format(time.asctime(),wtestSNRm[i])
        
        # compute measured SNR using the exact template
        filtSNR = np.array([meas_snr(d,s,np.zeros(N),Tobs,fs,p.data.data) for d,s,p in zip(data,sig,psds)])
        filtSNRm[i] = np.sqrt(np.sum(filtSNR**2))
        print '{}: exact template multidetector SNR = {}'.format(time.asctime(),filtSNRm[i])        

        # compute measured SNR on whitened data using the exact template
        wfiltSNR = np.array([meas_snr(d,s,np.zeros(N),Tobs,fs,p) for d,s,p in zip(wdata,wsig,wpsds)])
        wfiltSNRm[i] = np.sqrt(np.sum(wfiltSNR**2))
        print '{}: exact template multidetector SNR (whitened data) = {}'.format(time.asctime(),wfiltSNRm[i])

        # compute measured SNR *on noise only* using the exact template
        nfiltSNR = np.array([meas_snr(n,s,np.zeros(N),Tobs,fs,p.data.data) for n,s,p in zip(noise,sig,psds)])
        nfiltSNRm[i] = np.sqrt(np.sum(nfiltSNR**2))
        print '{}: exact template noise only multidetector SNR = {}'.format(time.asctime(),nfiltSNRm[i])       

        # compute measured SNR *on noise only* whitened data using the exact template
        wnfiltSNR = np.array([meas_snr(n,s,np.zeros(N),Tobs,fs,p) for n,s,p in zip(wnoise,wsig,wpsds)])
        wnfiltSNRm[i] = np.sqrt(np.sum(wnfiltSNR**2))
        print '{}: exact template noise only multidetector SNR (whitened data) = {}'.format(time.asctime(),wnfiltSNRm[i])

        # compute measured SNR as a function of time
        # using LOSC convolution method
        tsSNR = np.array([snr_ts(d,hpc[0],hpc[1],Tobs,fs,p.data.data) for d,p in zip(data,psds)])
        maxtsSNR = np.max(tsSNR,axis=1)
        maxtsSNRm[i] = np.sqrt(np.sum(maxtsSNR**2))
        print '{}: maximised multidetector SNR = {}'.format(time.asctime(),maxtsSNRm[i])

        # compute measured SNR *on noise only* as a function of time
        # using LOSC convolution method
        ntsSNR = np.array([snr_ts(n,hpc[0],hpc[1],Tobs,fs,p.data.data) for n,p in zip(noise,psds)])
        nmaxtsSNR = np.max(ntsSNR,axis=1)
        nmaxtsSNRm[i] = np.sqrt(np.sum(nmaxtsSNR**2))
        print '{}: maximised noise only multidetector SNR = {}'.format(time.asctime(),nmaxtsSNRm[i])

        # compute measured SNR as a function of time on whitened data
        # using LOSC convolution method
        wtsSNR = np.array([snr_ts(d,whpc[0],whpc[1],Tobs,fs,p) for d,p in zip(wdata,wpsds)])
        wmaxtsSNR = np.max(wtsSNR,axis=1)
        wmaxtsSNRm[i] = np.sqrt(np.sum(wmaxtsSNR**2))
        print '{}: maximised multidetector SNR = {}'.format(time.asctime(),wmaxtsSNRm[i])

        # compute measured SNR *on noise only* as a function of time on
        # whitened data using LOSC convolution method
        wntsSNR = np.array([snr_ts(n,whpc[0],whpc[1],Tobs,fs,p) for n,p in zip(wnoise,wpsds)])
        wnmaxtsSNR = np.max(wntsSNR,axis=1)
        wnmaxtsSNRm[i] = np.sqrt(np.sum(wnmaxtsSNR**2))
        print '{}: maximised noise only multidetector SNR = {}'.format(time.asctime(),wnmaxtsSNRm[i])

    # make distribution plots
    nbins = int(np.sqrt(args.Nsig))
    temp = np.linspace(0,isnr+5,1000)
    plt.figure()
    plt.hist(filtSNRm,nbins,normed=True,alpha=0.5)
    plt.hist(maxtsSNRm,nbins,normed=True,alpha=0.5)
    plt.hist(nfiltSNRm,nbins,normed=True,alpha=0.5)
    plt.hist(nmaxtsSNRm,nbins,normed=True,alpha=0.5)
    plt.plot(temp,norm.pdf(temp,loc=isnr),'k')
    plt.plot(temp,chi.pdf(temp,2),'k')
    plt.xlim([0,np.max(temp)]) 
    plt.savefig('./verify.png')
    
    # make distribution plots
    plt.figure()
    plt.hist(wfiltSNRm,nbins,normed=True,alpha=0.5)
    plt.hist(wmaxtsSNRm,nbins,normed=True,alpha=0.5)
    plt.hist(wnfiltSNRm,nbins,normed=True,alpha=0.5)
    plt.hist(wnmaxtsSNRm,nbins,normed=True,alpha=0.5)
    plt.plot(temp,norm.pdf(temp,loc=isnr),'k')
    plt.plot(temp,chi.pdf(temp,2),'k')
    plt.xlim([0,np.max(temp)])
    plt.savefig('./verify_whitened.png')

    # make peak vs int snr plots
    peakSNRvec = np.array(peakSNRvec).flatten()
    intSNRvec = np.array(intSNRvec).flatten()
    plt.figure()
    plt.plot(peakSNRvec,intSNRvec,'.')
    plt.xlim([0,1.2*np.max(peakSNRvec)])
    plt.ylim([0,1.2*np.max(intSNRvec)])
    plt.savefig('./peakvsint.png')
    plt.figure()
    plt.hist(intSNRvec/peakSNRvec,nbins,normed=True,alpha=0.5)
    plt.savefig('./peakintratio.png')
    def _pdf_notTruncated(self, z, dps):
        scale = self._scale
        k = self._k
        dps = self._dps

        return chi.pdf(z/scale, k)
Exemple #20
0
    return y


def kdeplot(x, lower=-np.inf, upper=np.inf):
    x_grid = np.linspace(max(lower, np.min(x)), min(upper, np.max(x)), 1000)
    k = gaussian_kde(x)
    dd = k(x_grid)
    return x_grid, dd


# plot distn of r for diff D, also do same for uniform ball
x = np.linspace(0, 2.0, 1000)

plt.figure()
for dim, color in zip(D, colors):
    pdf = chi.pdf(np.sqrt(dim) * x, df=dim)
    plt.plot(x, pdf / np.max(pdf), color, label='$D=%d$' % dim)
plt.xlabel('$r$ (rescaled)')
plt.ylabel('$\chi$ pdf (rescaled)')
plt.legend()
plt.title('distributions on radius in gaussians')
plt.savefig('fig0' + ext, dpi=300)

plt.figure()
for dim, color in zip(D, colors):
    pdf = powerlaw.pdf(np.sqrt(dim) * x, a=dim, loc=0, scale=np.sqrt(dim))
    plt.plot(x, pdf / np.max(pdf), color, label='$D=%d$' % dim)
plt.xlabel('$r$ (rescaled)')
plt.ylabel('power law pdf (rescaled)')
plt.legend()
plt.title('distributions on radius in uniform ball')