Exemple #1
0
def test_closed_form_naive():
    """ Test whether the results line up with a closed form solution for the
    special case, where alpha is set to zero. This function test the naive
    monte carlo implementation.
    """
    # This unit test shows that the naive Monte Carlo implementation does not
    # line up with a closed form solution. However, we want to ensure a
    # successful run of the testing battery in our continous integration
    # workflow. On the slides, this test is presented and discussed without
    # the capture.
    with pytest.raises(AssertionError):
        for _ in range(10):
            # Generate random request.
            alpha, shape, _, int_options = generate_random_request()
            # Set options favourable.
            int_options['naive_mc']['num_draws'] = 1000
            int_options['naive_mc']['implementation'] = 'fast'
            # Restrict to special case.
            alpha, shape = 0.0, 0.001
            # Calculate closed form solution and simulate special case.
            closed_form = lognorm.mean(shape)
            simulated = eupy.get_baseline_lognormal(alpha, shape, 'naive_mc',
                                                int_options)
            # Test equality.
            np.testing.assert_almost_equal(closed_form, simulated, decimal=3)
Exemple #2
0
def expect(mu, sigma, pos, cost):
    ev = lognorm.mean(sigma, scale=np.exp(mu))
    
    
    val = ((1-pos)*-cost) + (pos * (ev - cost))
    
    
    return(val)
Exemple #3
0
 def __init__(self, mode=0, elem=None, sample=None):
     if mode == 0:
         self.s = elem[0]
         self.mu = elem[1]
         self.sigma = elem[2]
     else:
         self.s, self.mu, self.sigma = lognorm.fit(sample)
     self.math_average = lognorm.mean(self.s, loc=self.mu, scale=self.sigma)
     self.dispersion = lognorm.var(self.s, loc=self.mu, scale=self.sigma)
Exemple #4
0
def test_closed_form_quad():
    """ Test whether the results line up with a closed form solution for the
    special case, where alpha is set to zero. This function test the
    quadrature implementation.
    """
    for _ in range(10):
        # Generate random request.
        alpha, shape, _, int_options = generate_random_request()
        # Restrict to special case.
        alpha, shape = 0.0, 0.001
        # Calculate closed form solution and simulate special case.
        closed_form = lognorm.mean(shape)
        simulated = eupy.get_baseline_lognormal(alpha, shape, 'quad',
                                               int_options)
        # Test equality.
        np.testing.assert_almost_equal(closed_form, simulated, decimal=3)
def plot_prob_density(mu, la, predsData, testData, xmin, xmax):
    from scipy.stats import lognorm

    fig, axes = plt.subplots(1, 1, figsize=(5, 4), sharey=True, dpi=120)
    font = "Times New Roman"

    f3 = lambda x, mu, la: (1 / x * la * (2 * math.pi)**0.5) * np.exp(-(
        (np.log(x) - mu)**2) / (2 * la**2))

    x2 = np.linspace(0, xmax, 300)

    axes.plot(x2, f3(x2, mu, la))
    ymin, ymax = axes.get_ylim()

    x_bounds = lognorm.interval(alpha=0.95, s=la, scale=np.exp(mu))
    x_bounds_std = lognorm.interval(alpha=0.68, s=la, scale=np.exp(mu))

    axes.axvline(x=testData.sum(), color='red', linestyle=':')
    ymaxes = f3(np.asarray(x_bounds), mu, la) / ymax + 0.01

    axes.axvline(x=x_bounds[0], color='blue', alpha=0.3, linestyle=':')
    axes.axvline(x=x_bounds[1], color='blue', alpha=0.3, linestyle=':')

    xfill = np.linspace(x_bounds[0], x_bounds[1], 100)
    xfill_std = np.linspace(x_bounds_std[0], x_bounds_std[1], 100)

    axes.fill_between(xfill, f3(xfill, mu, la), alpha=0.1, color='blue')
    axes.fill_between(xfill_std,
                      f3(xfill_std, mu, la),
                      alpha=0.1,
                      color='blue')

    #axes.fill_between(xfill,)
    axes.text(x=testData.sum() + 1,
              y=.03 * ymax,
              s='Actual: ' + str(int(testData.sum())),
              color='red')
    #axes.text(x=x_bounds[1]+1,y=ymax*.9,s='Upper 95%:',color='blue')
    #axes.text(x=x_bounds[1]+1,y=ymax*.82,s=str(round(x_bounds[1],1)),color='blue')
    #axes.text(x=x_bounds[0]-10,y=ymax*.9,s='Lower 95%:',color='blue')
    #axes.text(x=x_bounds[0]-10,y=ymax*.82,s=str(round(x_bounds[0],1)),color='blue')
    axes.set_xlabel('Number of days exceeding threshold',
                    fontname=font,
                    fontweight="heavy",
                    fontsize=12)
    axes.set_ylabel('Probability density function (-)',
                    fontname=font,
                    fontweight="heavy",
                    fontsize=12)
    axes.set_ylim(0, ymax)
    axes.set_xlim(0, xmax)

    labels = axes.get_xticklabels() + axes.get_yticklabels()
    [label.set_fontname(font) for label in labels]
    fig.show()

    print('**********************************')
    print('Expected number of days exceeding thermal comfort criteria: ' +
          str(round(lognorm.mean(s=la, scale=np.exp(mu)), 1)) + ' +/- ' +
          str(round(lognorm.std(s=la, scale=np.exp(mu)), 1)))
    print('Most likely number of days exceeding thermal comfort criteria: ' +
          str(round(np.exp(mu - la**2))) + ' +/- ' +
          str(round(lognorm.std(s=la, scale=np.exp(mu)), 1)))
    print(
        'Predicted number of days exceeding thermal comfort criteria (deterministic): '
        + str(int(np.sum(predsData))))
    print('Actual number of days exceeding thermal comfort criteria: ' +
          str(int(testData.sum())))
    print('**********************************')
    from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score
    acc_score = accuracy_score(predsData, testData)
    prec_score = precision_score(predsData, testData)
    rec_score = recall_score(predsData, testData)
    roc_auc_score = roc_auc_score(predsData, testData)
    print("Test Accuracy score: ", acc_score)
    print("Test Precision score: ", prec_score)
    print("Test Recall score: ", rec_score)
    print("Test ROC AUC score: ", roc_auc_score)
Exemple #6
0
def length(mask, estSize, returnAll=False, showSteps=False, pdf=None):
    """
    Calculates the average between node ligament length and standard deviation
    of the passed mask.  Only meaningful on the fully connected phase.

    Parameters
    ----------
    mask : 2D array of bool
        Mask showing the area of one phase. 
    estSize : float64
        The estimated diameter.  Used to set some parameters.
    returnAll : bool, optional
        If set to true, a list of all the measurements will be returned.
    showSteps : bool, optional
        If set to true, figures will be displayed that shows the results of
        intermediate steps when calculating the diameter.
    pdf : matplotlib.backends.backend_pdf.PdfPages, optional
        If provided, information will be output to the pdf file.
        
    Returns
    -------
    logavg : float64
        Average ligament length.  (Assumes lognormal distribution.)
    logstd : float64
        Standard deviation of ligament diameters.
    allMeasurements: 1D array of float64, optional
        A list of all measured ligament lengths.
    """

    # Debug mode
    debug = False
    if debug:
        showSteps = True

    # Adjustable parameters.
    # These have been highly tested and changing these may throw off results.
    small_lig = 0.6 * estSize  # Ligaments smaller than this are within a node.
    filter_out_mult = 0.4  # This * estSize is ignored in final calculation.

    # Return 0 if the mask is not fully connected.
    if not isConnected(mask):
        if returnAll:
            return 0, 0, 0
        else:
            return 0, 0

    rows, cols = mask.shape
    skel = skeleton(mask, estSize, removeEdge=True, times=3)

    if debug:
        display.showSkel(skel, mask)

    # get ligament and node labels
    nodes = np.copy(skel)
    ligaments = np.copy(skel)
    neighbors = convolve2d(skel, np.ones((3, 3)), mode='same')
    neighbors = neighbors * skel
    nodes[neighbors < 4] = 0
    ligaments[neighbors > 3] = 0
    ligaments = label(ligaments, background=0)
    nodes = binary_dilation(nodes, selem=disk(3))
    nodes = label(nodes, background=0)

    # get a list of ligaments connected to each node
    node_to_lig = [
    ]  # node_to_lig[n] is an array of each ligament label that is connected to node n
    unodes = np.unique(nodes)
    for n in unodes:
        node_to_lig.append(np.unique(ligaments[nodes == n]))

    # get a list of nodes connected to each ligament
    lig_to_node = [
    ]  # lig_to_node[l] is an array of each node label that is connected to ligament l
    uligs = np.unique(ligaments)
    for l in uligs:
        lig_to_node.append(np.unique(nodes[ligaments == l]))

    # Get the length of each ligament between nodes.
    lengths = np.bincount(ligaments.flatten())

    # Add ligaments that are within a single node to connected ligaments.
    small = int(round(small_lig))
    too_small = []
    for l in uligs:
        if lengths[l] <= small:
            too_small.append(l)  #keep track of ligaments that are too small
            for connected in lig_to_node[l]:
                if connected > 0 and connected != l:
                    # add half the small ligament to the connected ligaments.
                    lengths[connected] += int(round(lengths[l] / 2, 0))

    # Set to True to show which ligaments are considered to be within a
    # single node.
    if showSteps:
        ligaments_small = ligaments > 0
        ligaments_small = ligaments_small.astype('uint8')
        ligaments_small[ligaments_small == 1] = 2
        for i in too_small:
            ligaments_small[ligaments == i] = 1
        display.showSkel(ligaments_small, mask, dialate=False,
                title=("Green = within node ligaments, " \
                       "White = between node ligaments"))

    # filter out background and extra small lengths
    lengths[0] = 0
    allMeasurements = lengths[lengths > 0]
    lengths = lengths[lengths > estSize * filter_out_mult]

    if len(lengths) == 0:
        if returnAll:
            return 0, 0, 0
        else:
            return 0, 0

    # Get a lognormal fit.
    fit = lognorm.fit(lengths.flatten(), floc=0)
    pdf_fitted = lognorm.pdf(lengths.flatten(),
                             fit[0],
                             loc=fit[1],
                             scale=fit[2])

    # Get gaussian fit.
    gfit = norm.fit(lengths.flatten())

    # Get average and standard deviation for lognormal fit.
    logaverage = lognorm.mean(fit[0], loc=fit[1], scale=fit[2])
    logstd = lognorm.std(fit[0], loc=fit[1], scale=fit[2])

    # Get average and standard deviation for normal fit.
    average = norm.mean(gfit[0], gfit[1])
    std = norm.std(gfit[0], gfit[1])
    numbMeasured = lengths.size

    if showSteps:
        display.showSkel(ligaments, mask, dialate=False)

    if showSteps:
        display.showHist(lengths,
                         gauss=True,
                         log=True,
                         title='Ligament Lengths',
                         xlabel='Ligament lengths [pixels]')

    if pdf is not None:
        inout.pdfSaveSkel(pdf, ligaments, mask, dialate=True)
        inout.pdfSaveHist(pdf,
                          lengths,
                          gauss=True,
                          log=True,
                          title='Ligament Lengths',
                          xlabel='Ligament lengths [pixels]')

    if returnAll:
        # Change to return average, std... for mean and SD of normal PDF.
        return logaverage, logstd, allMeasurements
    else:
        return logaverage, logstd
 def mean(self, dist):
     return lognorm.mean(*self._get_params(dist))
Exemple #8
0
 def mean(self, n, p):
     mu = lognorm.mean(self, n, p)
     return mu
Exemple #9
0
        
        return(sum(self.portfolio), sum(self.portfolio)/size)

port = portfolio()

# =============================================================================
# Simulating a portfolio
# =============================================================================

p1_num = 44
p1_ports = [port.PoS_portfolio(0.07, size=p1_num, scale=scale_factor) for i in range(10000)]
    
p1_ports_df = pd.DataFrame(p1_ports, columns=['Total value', 'Value per asset'])

#minus ev
p1_ports_df['Net return'] = p1_ports_df['Total value'] - (lognorm.mean(sigma, scale=scale_factor)*p1_num*0.07)
#minus median
#p1_ports_df['Net return'] = p1_ports_df['Total value'] - (lognorm.median(sigma, scale=scale_factor)*p1_num*0.07)


p1_ports_df['Net return'].describe()



p2_num = 21
p2_ports = [port.PoS_portfolio(0.15, size=p2_num, scale=scale_factor) for i in range(10000)]
    
p2_ports_df = pd.DataFrame(p2_ports, columns=['Total value', 'Value per asset'])

#minus ev
p2_ports_df['Net return'] = p2_ports_df['Total value'] - (lognorm.mean(sigma, scale=scale_factor)*p2_num*0.15)
Exemple #10
0
 def mean(self):
     return lognorm.mean(self.shape, self.loc, self.scale)