def __init__(self, scenario_flag="Freeway_Free"): """ Totally five scenarios are supported here: Freeway_Night, Freeway_Free, Freeway_Rush; Urban_Peak, Urban_Nonpeak. The PDFs of the vehicle speed and the inter-vehicle space are adapted from existing references. """ if scenario_flag == "Freeway_Night": self.headway_random = expon(0.0, 1.0 / 256.41) meanSpeed = 30.93 #m/s stdSpeed = 1.2 #m/s elif scenario_flag == "Freeway_Free": self.headway_random = lognorm(0.75, 0.0, np.exp(3.4)) meanSpeed = 29.15 #m/s stdSpeed = 1.5 #m/s elif scenario_flag == "Freeway_Rush": self.headway_random = lognorm(0.5, 0.0, np.exp(2.5)) meanSpeed = 10.73 #m/s stdSpeed = 2.0 #m/s elif scenario_flag == "Urban_Peak": scale = 1.096 c = 0.314 loc = 0.0 self.headway_random = fisk(c, loc, scale) meanSpeed = 6.083 #m/s stdSpeed = 1.2 #m/s elif scenario_flag == "Urban_Nonpeak": self.headway_random = lognorm(0.618, 0.0, np.exp(0.685)) meanSpeed = 12.86 #m/s stdSpeed = 1.5 #m/s else: raise self.speed_random = norm(meanSpeed, stdSpeed)
def __init__(self, scenario_flag = "Freeway_Free"): """ Totally five scenarios are supported here: Freeway_Night, Freeway_Free, Freeway_Rush; Urban_Peak, Urban_Nonpeak. The PDFs of the vehicle speed and the inter-vehicle space are adapted from existing references. """ if scenario_flag == "Freeway_Night": self.headway_random = expon(0.0, 1.0/256.41) meanSpeed = 30.93 #m/s stdSpeed = 1.2 #m/s elif scenario_flag == "Freeway_Free": self.headway_random = lognorm(0.75, 0.0, np.exp(3.4)) meanSpeed = 29.15 #m/s stdSpeed = 1.5 #m/s elif scenario_flag == "Freeway_Rush": self.headway_random = lognorm(0.5, 0.0, np.exp(2.5)) meanSpeed = 10.73 #m/s stdSpeed = 2.0 #m/s elif scenario_flag == "Urban_Peak": scale = 1.096 c = 0.314 loc = 0.0 self.headway_random = fisk(c, loc, scale) meanSpeed = 6.083 #m/s stdSpeed = 1.2 #m/s elif scenario_flag == "Urban_Nonpeak": self.headway_random = lognorm(0.618, 0.0, np.exp(0.685)) meanSpeed = 12.86 #m/s stdSpeed = 1.5 #m/s else: raise self.speed_random = norm(meanSpeed, stdSpeed)
def _get_dist(latent, theta): if latent == 'normal': dist = st.norm(*theta) elif latent == 'logistic': dist = st.logistic(*theta) elif latent == 'log-logistic': dist = st.fisk(c=theta[1], scale=theta[0]) return dist
def __init__(self, alpha, beta): """ Parameters ---------- alpha : float, positive Scale parameter beta : float, positive Shape parameter """ assert alpha > 0, "alpha must be positive" assert beta > 0, "alpha must be positive" # Parameters self.alpha = alpha self.beta = beta # Scipy backend self.sp = fisk(c=beta, scale=alpha) super().__init__()
def all_dists(): # dists param were taken from scipy.stats official # documentaion examples # Total - 89 return { "alpha": stats.alpha(a=3.57, loc=0.0, scale=1.0), "anglit": stats.anglit(loc=0.0, scale=1.0), "arcsine": stats.arcsine(loc=0.0, scale=1.0), "beta": stats.beta(a=2.31, b=0.627, loc=0.0, scale=1.0), "betaprime": stats.betaprime(a=5, b=6, loc=0.0, scale=1.0), "bradford": stats.bradford(c=0.299, loc=0.0, scale=1.0), "burr": stats.burr(c=10.5, d=4.3, loc=0.0, scale=1.0), "cauchy": stats.cauchy(loc=0.0, scale=1.0), "chi": stats.chi(df=78, loc=0.0, scale=1.0), "chi2": stats.chi2(df=55, loc=0.0, scale=1.0), "cosine": stats.cosine(loc=0.0, scale=1.0), "dgamma": stats.dgamma(a=1.1, loc=0.0, scale=1.0), "dweibull": stats.dweibull(c=2.07, loc=0.0, scale=1.0), "erlang": stats.erlang(a=2, loc=0.0, scale=1.0), "expon": stats.expon(loc=0.0, scale=1.0), "exponnorm": stats.exponnorm(K=1.5, loc=0.0, scale=1.0), "exponweib": stats.exponweib(a=2.89, c=1.95, loc=0.0, scale=1.0), "exponpow": stats.exponpow(b=2.7, loc=0.0, scale=1.0), "f": stats.f(dfn=29, dfd=18, loc=0.0, scale=1.0), "fatiguelife": stats.fatiguelife(c=29, loc=0.0, scale=1.0), "fisk": stats.fisk(c=3.09, loc=0.0, scale=1.0), "foldcauchy": stats.foldcauchy(c=4.72, loc=0.0, scale=1.0), "foldnorm": stats.foldnorm(c=1.95, loc=0.0, scale=1.0), # "frechet_r": stats.frechet_r(c=1.89, loc=0.0, scale=1.0), # "frechet_l": stats.frechet_l(c=3.63, loc=0.0, scale=1.0), "genlogistic": stats.genlogistic(c=0.412, loc=0.0, scale=1.0), "genpareto": stats.genpareto(c=0.1, loc=0.0, scale=1.0), "gennorm": stats.gennorm(beta=1.3, loc=0.0, scale=1.0), "genexpon": stats.genexpon(a=9.13, b=16.2, c=3.28, loc=0.0, scale=1.0), "genextreme": stats.genextreme(c=-0.1, loc=0.0, scale=1.0), "gausshyper": stats.gausshyper(a=13.8, b=3.12, c=2.51, z=5.18, loc=0.0, scale=1.0), "gamma": stats.gamma(a=1.99, loc=0.0, scale=1.0), "gengamma": stats.gengamma(a=4.42, c=-3.12, loc=0.0, scale=1.0), "genhalflogistic": stats.genhalflogistic(c=0.773, loc=0.0, scale=1.0), "gilbrat": stats.gilbrat(loc=0.0, scale=1.0), "gompertz": stats.gompertz(c=0.947, loc=0.0, scale=1.0), "gumbel_r": stats.gumbel_r(loc=0.0, scale=1.0), "gumbel_l": stats.gumbel_l(loc=0.0, scale=1.0), "halfcauchy": stats.halfcauchy(loc=0.0, scale=1.0), "halflogistic": stats.halflogistic(loc=0.0, scale=1.0), "halfnorm": stats.halfnorm(loc=0.0, scale=1.0), "halfgennorm": stats.halfgennorm(beta=0.675, loc=0.0, scale=1.0), "hypsecant": stats.hypsecant(loc=0.0, scale=1.0), "invgamma": stats.invgamma(a=4.07, loc=0.0, scale=1.0), "invgauss": stats.invgauss(mu=0.145, loc=0.0, scale=1.0), "invweibull": stats.invweibull(c=10.6, loc=0.0, scale=1.0), "johnsonsb": stats.johnsonsb(a=4.32, b=3.18, loc=0.0, scale=1.0), "johnsonsu": stats.johnsonsu(a=2.55, b=2.25, loc=0.0, scale=1.0), "ksone": stats.ksone(n=1e03, loc=0.0, scale=1.0), "kstwobign": stats.kstwobign(loc=0.0, scale=1.0), "laplace": stats.laplace(loc=0.0, scale=1.0), "levy": stats.levy(loc=0.0, scale=1.0), "levy_l": stats.levy_l(loc=0.0, scale=1.0), "levy_stable": stats.levy_stable(alpha=0.357, beta=-0.675, loc=0.0, scale=1.0), "logistic": stats.logistic(loc=0.0, scale=1.0), "loggamma": stats.loggamma(c=0.414, loc=0.0, scale=1.0), "loglaplace": stats.loglaplace(c=3.25, loc=0.0, scale=1.0), "lognorm": stats.lognorm(s=0.954, loc=0.0, scale=1.0), "lomax": stats.lomax(c=1.88, loc=0.0, scale=1.0), "maxwell": stats.maxwell(loc=0.0, scale=1.0), "mielke": stats.mielke(k=10.4, s=3.6, loc=0.0, scale=1.0), "nakagami": stats.nakagami(nu=4.97, loc=0.0, scale=1.0), "ncx2": stats.ncx2(df=21, nc=1.06, loc=0.0, scale=1.0), "ncf": stats.ncf(dfn=27, dfd=27, nc=0.416, loc=0.0, scale=1.0), "nct": stats.nct(df=14, nc=0.24, loc=0.0, scale=1.0), "norm": stats.norm(loc=0.0, scale=1.0), "pareto": stats.pareto(b=2.62, loc=0.0, scale=1.0), "pearson3": stats.pearson3(skew=0.1, loc=0.0, scale=1.0), "powerlaw": stats.powerlaw(a=1.66, loc=0.0, scale=1.0), "powerlognorm": stats.powerlognorm(c=2.14, s=0.446, loc=0.0, scale=1.0), "powernorm": stats.powernorm(c=4.45, loc=0.0, scale=1.0), "rdist": stats.rdist(c=0.9, loc=0.0, scale=1.0), "reciprocal": stats.reciprocal(a=0.00623, b=1.01, loc=0.0, scale=1.0), "rayleigh": stats.rayleigh(loc=0.0, scale=1.0), "rice": stats.rice(b=0.775, loc=0.0, scale=1.0), "recipinvgauss": stats.recipinvgauss(mu=0.63, loc=0.0, scale=1.0), "semicircular": stats.semicircular(loc=0.0, scale=1.0), "t": stats.t(df=2.74, loc=0.0, scale=1.0), "triang": stats.triang(c=0.158, loc=0.0, scale=1.0), "truncexpon": stats.truncexpon(b=4.69, loc=0.0, scale=1.0), "truncnorm": stats.truncnorm(a=0.1, b=2, loc=0.0, scale=1.0), "tukeylambda": stats.tukeylambda(lam=3.13, loc=0.0, scale=1.0), "uniform": stats.uniform(loc=0.0, scale=1.0), "vonmises": stats.vonmises(kappa=3.99, loc=0.0, scale=1.0), "vonmises_line": stats.vonmises_line(kappa=3.99, loc=0.0, scale=1.0), "wald": stats.wald(loc=0.0, scale=1.0), "weibull_min": stats.weibull_min(c=1.79, loc=0.0, scale=1.0), "weibull_max": stats.weibull_max(c=2.87, loc=0.0, scale=1.0), "wrapcauchy": stats.wrapcauchy(c=0.0311, loc=0.0, scale=1.0), }
mean, var, skew, kurt = fisk.stats(c, moments='mvsk') # Display the probability density function (``pdf``): x = np.linspace(fisk.ppf(0.01, c), fisk.ppf(0.99, c), 100) ax.plot(x, fisk.pdf(x, c), 'r-', lw=5, alpha=0.6, label='fisk pdf') # Alternatively, the distribution object can be called (as a function) # to fix the shape, location and scale parameters. This returns a "frozen" # RV object holding the given parameters fixed. # Freeze the distribution and display the frozen ``pdf``: rv = fisk(c) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') # Check accuracy of ``cdf`` and ``ppf``: vals = fisk.ppf([0.001, 0.5, 0.999], c) np.allclose([0.001, 0.5, 0.999], fisk.cdf(vals, c)) # True # Generate random numbers: r = fisk.rvs(c, size=1000) # And compare the histogram: ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
#shape, scale, loc = (2.99480920063372, 2.46709346372752, 0.0249999999999978) #(1.0, 1.321950408033661, 0.85874898071806682) #(0.7180, 0.9328, 1.2021) #fitting = stats.lognorm(4.67861713792556, 6.91953608758707) '''generalized extreme OK lognormal OK birnbaumsaunders OK generalized pareto OK inversegaussian OK logistic NO loglogistic/fisk NO ''' #v = numpy.random.gumbel(loc=1.20212649309532, scale=0.932804666751013, size=10000) #fitting = stats.genextreme(-0.718044067607244, loc=1.20212649309532, scale=0.932804666751013) #fitting = stats.lognorm(4.67861713792556, scale=6.91953608758707) #fitting = stats.invgauss(5.3146e+003, scale=0.9277) #fitting = stats.fatiguelife(18.1441, scale=359.6783) fitting = stats.fisk(0.4190, shape=0.5201) #mu=9.31524829249769 sigma=41.5219061720147 #fitting = stats.lognorm(0.8491, loc=-0.089) #fitting = stats.logistic(64.9711, shape=69.3347) #print stats.genpareto.fit(rvs) test = open("test.dat", "w") for i in range(10000): print >> test, fitting.rvs() #print stats.genpareto(2.9948, scale=2.4671, loc=0.0250).rvs() #c=[0.7180, 0.9328, 1.2021] #print stats.fisk.rvs(0.5201, 0.4190) test.close() '''STEREOTYPE_RECIPES_PATH = "D:/Documentos/Recerca/Publicaciones/2015/user_stereotypes/Stereotype_Analysis/" to_fit = [] for line in open(STEREOTYPE_RECIPES_PATH + "/data/backup_GetContentResponse_GetContentResponse.dat", "r"): to_fit.append(float(line.split(",")[1])/1000.0)