Exemple #1
0
def find_tls(params,
             pdb_hierarchy,
             xray_structure,
             return_as_list=False,
             ignore_pdb_header_groups=False,
             out=None):
    """
  !!! WARNING! incoming xray_structure here gets converted to
  isotropic B-factors IN PLACE.
  """
    if (out is None):
        out = sys.stdout
    print_statistics.make_header("Analyzing inputs", out=out)
    if (params.random_seed is None):
        params.random_seed = flex.get_random_seed()
    random.seed(params.random_seed)
    flex.set_random_seed(params.random_seed)
    xray_structure.convert_to_isotropic()
    sites_cart = xray_structure.sites_cart()
    u_cart = None
    u_iso = xray_structure.extract_u_iso_or_u_equiv()  #*adptbx.u_as_b(1.) # ?
    bad_i_seqs = check_adp(u_iso=u_iso, out=out)
    if (bad_i_seqs is not None):
        atoms = pdb_hierarchy.atoms()
        bad_atom_strings = []
        for i_seq in bad_i_seqs[:10]:
            atom_str = atoms[i_seq].format_atom_record()
            bad_atom_strings.append(atom_str)
        if (len(bad_i_seqs) > 10):
            bad_atom_strings.append("... (remaining %d not shown)" %
                                    (len(bad_i_seqs) - 10))
        raise Sorry(
            ("%d atoms in the model contain isotropic B-factors <= 0:\n" +
             "\n".join(bad_atom_strings)) % (len(bad_i_seqs)))
    #
    ssm = mmtbx.secondary_structure.manager(pdb_hierarchy=pdb_hierarchy,
                                            sec_str_from_pdb_file=None,
                                            params=None,
                                            log=out)
    alpha_h_selection = ssm.helix_selection()
    secondary_structure_selection = ssm.helix_selection() | \
        ssm.beta_selection() | ssm.base_pair_selection()
    if (u_cart is not None):
        assert secondary_structure_selection.size() == u_cart.size()
    else:
        assert secondary_structure_selection.size() == u_iso.size()
    ssm.show_summary(log=out)
    chains_and_residue_selections, secondary_structure_selection = chains_and_atoms(
        pdb_hierarchy=pdb_hierarchy,
        secondary_structure_selection=secondary_structure_selection,
        out=out)
    chains_and_permutations = []
    chains_and_atom_selection_strings = []
    print_statistics.make_header("Processing chains", out=out)
    if (params.nproc is None):
        params.nproc = 1
    for crs in chains_and_residue_selections:
        print_statistics.make_sub_header("Processing chain '%s'" % crs[0],
                                         out=out)
        chain_selection = chain_selection_from_residues(crs[1])
        groups, perms = get_model_partitioning(
            residues=crs[1],
            secondary_structure_selection=secondary_structure_selection,
            out=out)
        #
        if (len(perms) == 1):
            print("  Whole chain is considered as one TLS group.", file=out)
            chains_and_atom_selection_strings.append([
                crs[0],
                permutations_as_atom_selection_string(groups, perms[0])
            ])
        else:
            print("  Fitting TLS matrices...", file=out)
            dic = {}
            target_best = 1.e+9
            if (params.nproc is Auto) or (params.nproc > 1):
                process_perms = analyze_permutations(groups=groups,
                                                     sites_cart=sites_cart,
                                                     u_cart=u_cart,
                                                     u_iso=u_iso)
                from libtbx import easy_mp
                stdout_and_targets = easy_mp.pool_map(
                    processes=params.nproc,
                    fixed_func=process_perms,
                    args=perms,
                    chunksize=100,
                    func_wrapper="buffer_stdout_stderr")
                targets = [t for so, t in stdout_and_targets]
                for (perm, target) in zip(perms, targets):
                    dic.setdefault(len(perm), []).append([target, perm])
            else:
                for i_perm, perm in enumerate(perms):
                    if i_perm % 500 == 0:
                        print("    ...perm %d of %d" % (i_perm, len(perms)),
                              file=out)
                    selections = tls_group_selections(groups, perm)
                    target = 0
                    for selection in selections:
                        mo = tls_refinery(u_cart=u_cart,
                                          u_iso=u_iso,
                                          sites_cart=sites_cart,
                                          selection=selection)
                        target += mo.f
                    dic.setdefault(len(perm), []).append([target, perm])
                #print "    perm %d of %d: target=%8.3f (TLS groups: %s), permutation:"%(
                #  i_perm, len(perms),target,len(perm)),perm
            print("    Best fits:", file=out)
            print("      No. of         Targets", file=out)
            print("      groups   best   rand.pick  diff.  score permutation",
                  file=out)
            score_best = -1.e+9
            perm_choice = None
            for k, v in six.iteritems(dic):
                t_best = v[0][0]
                perm_best = v[0][1]
                for v_ in v:
                    if (v_[0] < t_best):
                        t_best = v_[0]
                        perm_best = v_[1]
                if (u_cart is not None):
                    u_cart_ = u_cart.select(chain_selection)
                else:
                    u_cart_ = None
                if (u_iso is not None):
                    u_iso_ = u_iso.select(chain_selection)
                else:
                    u_iso_ = None
                r = tls_refinery_random_groups(
                    u_cart=u_cart_,
                    u_iso=u_iso_,
                    sites_cart=sites_cart.select(chain_selection),
                    n_groups=k)
                score = (r - t_best) / (r + t_best) * 100.
                print("         %3d %6.3f      %6.3f %6.2f %6.3f" %
                      (k, t_best, r, r - t_best, score),
                      perm_best,
                      file=out)
                if (score > score_best):
                    score_best = score
                    perm_choice = perm_best[:]
            #
            chains_and_permutations.append([crs[0], perm_choice])
            chains_and_atom_selection_strings.append([
                crs[0],
                permutations_as_atom_selection_string(groups, perm_choice)
            ])
            #
    print_statistics.make_header("SUMMARY", out=out)
    #print "Optimal TLS groups:"
    #for chain_and_permutation in chains_and_permutations:
    #  print chain_and_permutation
    #print
    print("TLS atom selections for phenix.refine:", file=out)
    groups_out = StringIO()
    selection_strings = []
    print("refinement.refine.adp {", file=groups_out)
    for r in chains_and_atom_selection_strings:
        prefix = "chain '%s'" % r[0]
        if (len(r[1]) > 0 and len(r[1:]) > 0):
            prefix += " and "
            for r_ in r[1:]:
                for r__ in r_:
                    if (len(r__) > 0):
                        group_selection = prefix + "(%s)" % r__
                        print("  tls = \"%s\"" % group_selection,
                              file=groups_out)
                        selection_strings.append("%s" % group_selection)
        else:
            print("  tls = \"%s\"" % prefix, file=groups_out)
            selection_strings.append("%s" % prefix)
    print("}", file=groups_out)
    print(groups_out.getvalue(), file=out)
    print(file=out)
    #XXX
    if 0:
        merge_groups_by_connectivity(pdb_hierarchy=pdb_hierarchy,
                                     xray_structure=xray_structure,
                                     selection_strings=selection_strings)
    #XXX
    if (len(selection_strings) > 0):
        total_target = total_score(pdb_hierarchy=pdb_hierarchy,
                                   sites_cart=sites_cart,
                                   u_iso=u_iso,
                                   selection_strings=selection_strings)
        print(
            "Overall best total target for automatically found groups: %10.1f"
            % total_target,
            file=out)
        print(file=out)
    if (return_as_list):
        return selection_strings
    else:
        return groups_out.getvalue()
def manage_random_seed(random_seed):
    if (random_seed is None):
        random_seed = flex.get_random_seed()
    random.seed(random_seed)
    flex.set_random_seed(random_seed)
def find_tls (params,
              pdb_inp,
              pdb_hierarchy,
              xray_structure,
              return_as_list=False,
              ignore_pdb_header_groups=False,
              out=None) :
  if (out is None) :
    out = sys.stdout
  print_statistics.make_header("Analyzing inputs", out=out)
  if (params.random_seed is None) :
    params.random_seed = flex.get_random_seed()
  random.seed(params.random_seed)
  flex.set_random_seed(params.random_seed)
  xray_structure.convert_to_isotropic()
  sites_cart = xray_structure.sites_cart()
  u_cart = None
  u_iso  = xray_structure.extract_u_iso_or_u_equiv()#*adptbx.u_as_b(1.) # ?
  bad_i_seqs = check_adp(u_iso=u_iso, out=out)
  if (bad_i_seqs is not None) :
    atoms = pdb_hierarchy.atoms()
    bad_atom_strings = []
    for i_seq in bad_i_seqs[:10] :
      atom_str = atoms[i_seq].format_atom_record()
      bad_atom_strings.append(atom_str)
    if (len(bad_i_seqs) > 10) :
      bad_atom_strings.append("... (remaining %d not shown)" %
        (len(bad_i_seqs)-10))
    raise Sorry(("%d atoms in the model contain isotropic B-factors <= 0:\n"+
      "\n".join(bad_atom_strings)) % (len(bad_i_seqs)))
  #
  ssm = mmtbx.secondary_structure.manager(
    pdb_hierarchy                = pdb_hierarchy,
    sec_str_from_pdb_file        = None,
    params                       = None)
  alpha_h_selection = ssm.alpha_selection()
  secondary_structure_selection = ssm.alpha_selection() | \
      ssm.beta_selection() | ssm.base_pair_selection()
  if(u_cart is not None):
    assert secondary_structure_selection.size() == u_cart.size()
  else:
    assert secondary_structure_selection.size() == u_iso.size()
  ssm.show_summary(log=out)
  chains_and_residue_selections, secondary_structure_selection = chains_and_atoms(
    pdb_hierarchy                 = pdb_hierarchy,
    secondary_structure_selection = secondary_structure_selection,
    out                           = out)
  chains_and_permutations = []
  chains_and_atom_selection_strings = []
  print_statistics.make_header("Processing chains", out=out)
  if (params.nproc is None) :
    params.nproc = 1
  for crs in chains_and_residue_selections:
    print_statistics.make_sub_header("Processing chain '%s'"%crs[0],
      out=out)
    chain_selection = chain_selection_from_residues(crs[1])
    groups, perms = get_model_partitioning(residues = crs[1],
      secondary_structure_selection = secondary_structure_selection,
      out = out)
    #
    #print
    #selection_arrays = sels_as_selection_arrays(sels = groups)
    #merge_groups_by_connectivity(
    #  pdb_hierarchy     = pdb_hierarchy,
    #  xray_structure    = xray_structure,
    #  selection_arrays  = selection_arrays)
    #assert 0
    #
    if(len(perms)==1):
      print >> out, "  Whole chain is considered as one TLS group."
      chains_and_atom_selection_strings.append([crs[0],
        permutations_as_atom_selection_string(groups, perms[0])])
    else:
      print >> out, "  Fitting TLS matrices..."
      dic = {}
      target_best = 1.e+9
      if (params.nproc is Auto) or (params.nproc > 1) :
        process_perms = analyze_permutations(
          groups=groups,
          sites_cart=sites_cart,
          u_cart=u_cart,
          u_iso=u_iso)
        from libtbx import easy_mp
        stdout_and_targets = easy_mp.pool_map(
          processes=params.nproc,
          fixed_func=process_perms,
          args=perms,
          chunksize=100,
          func_wrapper="buffer_stdout_stderr")
        targets = [ t for so, t in stdout_and_targets ]
        for (perm, target) in zip(perms, targets) :
          dic.setdefault(len(perm), []).append([target,perm])
      else :
        for i_perm, perm in enumerate(perms):
          if i_perm%500==0:
            print >> out, "    ...perm %d of %d"%(i_perm, len(perms))
          selections = tls_group_selections(groups, perm)
          target = 0
          for selection in selections:
            mo = tls_refinery(
              u_cart     = u_cart,
              u_iso      = u_iso,
              sites_cart = sites_cart,
              selection  = selection)
            target += mo.f
          dic.setdefault(len(perm), []).append([target,perm])
        #print "    perm %d of %d: target=%8.3f (TLS groups: %s), permutation:"%(
        #  i_perm, len(perms),target,len(perm)),perm
      print >> out, "    Best fits:"
      print >> out, "      No. of         Targets"
      print >> out, "      groups   best   rand.pick  diff.  score permutation"
      score_best = -1.e+9
      perm_choice = None
      for k, v in zip(dic.keys(),dic.values()):
        t_best = v[0][0]
        perm_best = v[0][1]
        for v_ in v:
          if(v_[0]<t_best):
            t_best = v_[0]
            perm_best = v_[1]
        if(u_cart is not None):
          u_cart_ = u_cart.select(chain_selection)
        else: u_cart_ = None
        if(u_iso is not None):
          u_iso_ = u_iso.select(chain_selection)
        else: u_iso_ = None
        r = tls_refinery_random_groups(
          u_cart     = u_cart_,
          u_iso      = u_iso_,
          sites_cart = sites_cart.select(chain_selection),
          n_groups   = k)
        score = (r-t_best)/(r+t_best)*100.
        print >> out, "         %3d %6.3f      %6.3f %6.2f %6.3f"%(
          k,t_best, r, r-t_best, score), perm_best
        if(score > score_best):
          score_best = score
          perm_choice = perm_best[:]
      #
      chains_and_permutations.append([crs[0],perm_choice])
      chains_and_atom_selection_strings.append([crs[0],
        permutations_as_atom_selection_string(groups, perm_choice)])
      #
  if (pdb_inp is not None) and (not ignore_pdb_header_groups) :
    external_tls_selections = external_tls(
      pdb_inp       = pdb_inp,
      pdb_hierarchy = pdb_hierarchy,
      sites_cart    = sites_cart,
      u_iso         = u_iso,
      out           = out)
  print_statistics.make_header("SUMMARY", out=out)
  #print "Optimal TLS groups:"
  #for chain_and_permutation in chains_and_permutations:
  #  print chain_and_permutation
  #print
  print >> out, "TLS atom selections for phenix.refine:"
  groups_out = cStringIO.StringIO()
  selection_strings = []
  print >> groups_out, "refinement.refine.adp {"
  for r in chains_and_atom_selection_strings:
    prefix = "chain '%s'"%r[0]
    if(len(r[1])>0 and len(r[1:])>0):
      prefix += " and "
      for r_ in r[1:]:
        for r__ in r_:
          if(len(r__)>0):
            group_selection = prefix+"(%s)"%r__
            print >> groups_out, "  tls = \"%s\"" % group_selection
            selection_strings.append("%s" % group_selection)
    else:
      print >> groups_out, "  tls = \"%s\"" % prefix
      selection_strings.append("%s" % prefix)
  print >> groups_out, "}"
  print >> out, groups_out.getvalue()
  print >> out
  #XXX
  if 0:
    merge_groups_by_connectivity(
      pdb_hierarchy     = pdb_hierarchy,
      xray_structure    = xray_structure,
      selection_strings = selection_strings)
  #XXX
  if(len(selection_strings)>0):
    total_target = total_score(
      pdb_hierarchy     = pdb_hierarchy,
      sites_cart        = sites_cart,
      u_iso             = u_iso,
      selection_strings = selection_strings)
    print >> out, "Overall best total target for automatically found groups: %10.1f"%total_target
    print >> out
  if (return_as_list) :
    return selection_strings
  else :
    return groups_out.getvalue()
def manage_random_seed(random_seed):
  if(random_seed is None):
    random_seed = flex.get_random_seed()
  random.seed(random_seed)
  flex.set_random_seed(random_seed)