def cull_braggs(self, count):
    if count == 0:
      window = 0
    else:
      window = len(self.bragg_times)/count

    if count <= 0 or window < 1:
      self.culled_braggs = self.braggs
      self.culled_bragg_times = self.bragg_times
      self.culled_distances = self.distances
      self.culled_sifoils = self.sifoils
      self.culled_wavelengths = self.wavelengths
      self.culled_indexed = self.indexed
      return

    self.culled_braggs = flex.double()
    self.culled_bragg_times = flex.double()
    self.culled_distances = flex.double()
    self.culled_sifoils = flex.double()
    self.culled_wavelengths = flex.double()
    self.culled_indexed = flex.bool()

    for i in range(count):
      braggs =  self.braggs[i*int(window):(i+1)*int(window)]
      idx = int(i*window) + flex.max_index(braggs)
      self.culled_braggs     .append(self.braggs[idx])
      self.culled_bragg_times.append(self.bragg_times[idx])
      self.culled_distances  .append(self.distances[idx])
      self.culled_sifoils    .append(self.sifoils[idx])
      self.culled_wavelengths.append(self.wavelengths[idx])
      self.culled_indexed    .append(self.indexed[idx])
Exemple #2
0
  def finite_difference_test(self,g):
    """
    Run basic gradient test. compare numerical estimate gradient to
    the largest calculated one. using t'(x)=(t(x+d)-t(x-d))/(2d)

    Argument:
     g : gradient, flex array
    """
    if(self.fmodel.r_work()>1.e-3):
      g = g.as_double()
      d = 1.e-5
      # find the index of the max gradient value
      i_g_max = flex.max_index(flex.abs(g))
      x_d = self.x
      # calc t(x+d)
      x_d[i_g_max] = self.x[i_g_max] + d
      self.update_model_sites(x = x_d)
      self.fmodel.update_xray_structure(update_f_calc=True)
      t1,_ = self.compute_functional_and_gradients(compute_gradients=False)
      # calc t(x-d)
      x_d[i_g_max] = self.x[i_g_max] - d
      self.update_model_sites(x = x_d)
      del x_d
      self.fmodel.update_xray_structure(update_f_calc=True)
      t2,_ = self.compute_functional_and_gradients(compute_gradients=False)
      # Return fmodel to the correct coordinates values
      self.update_model_sites(x = self.x)
      self.fmodel.update_xray_structure(update_f_calc=True)
      self.buffer_max_grad.append(g[i_g_max])
      self.buffer_calc_grad.append((t1-t2)/(d*2))
Exemple #3
0
    def _filter_maximum_centroid(self, coords, values, spots, cpos):
        """Filter the reflections by the distance between the maximum pixel
        value and the centroid position. If the centroid is a greater than the
        maximum separation from maximum pixel (in pixel coords) then discard.

        Params:
            coords The list of coordinates
            values The list of values
            cpos The list of centroids

        Returns:
            An index list of valid spots

        """
        from scitbx.array_family import flex
        from scitbx import matrix

        index = []
        for si, (s, c) in enumerate(zip(spots, cpos)):
            im = flex.max_index(flex.int([values[i] for i in s]))
            xc = matrix.col(c)
            xm = matrix.col(coords[s[im]])
            if (xc - xm).length() <= self._max_separation:
                index.append(si)

        # Return the list of indices
        return index
Exemple #4
0
def reduce_raw_data(raw_data, qmax, bandwidth, level=0.05, q_background=None):
    print "delta_q is ", bandwidth
    if qmax > raw_data.q[-1]:
        qmax = raw_data.q[-1]
    ### Get rid of noisy signall at very low q range ###
    qmin_indx = flex.max_index(raw_data.i)
    qmin = raw_data.q[qmin_indx]
    new_data = get_q_array_uniform_body(raw_data,
                                        q_min=qmin,
                                        q_max=qmax,
                                        level=level)
    qmax = new_data.q[-1]
    print "LEVEL=%f" % level, "and Q_MAX=%f" % qmax
    raw_q = raw_data.q[qmin_indx:]
    raw_i = raw_data.i[qmin_indx:]
    raw_s = raw_data.s[qmin_indx:]
    ### Take care of the background (set zero at very high q) ###
    if (q_background is not None):
        cutoff = flex.bool(raw_q > q_background)
        q_bk_indx = flex.last_index(cutoff, False)
        if (q_bk_indx < raw_q.size()):
            bkgrd = flex.mean(raw_i[q_bk_indx:])
            print "Background correction: I=I-background, where background=", bkgrd
            raw_i = flex.abs(raw_i - bkgrd)

    q = flex.double(range(int(
        (qmax - qmin) / bandwidth) + 1)) * bandwidth + qmin
    raw_data.i = flex.linear_interpolation(raw_q, raw_i, q)
    raw_data.s = flex.linear_interpolation(raw_q, raw_s, q)
    raw_data.q = q

    return raw_data
  def cull_braggs(self, count):
    if count == 0:
      window = 0
    else:
      window = len(self.bragg_times)/count

    if count <= 0 or window < 1:
      self.culled_braggs = self.braggs
      self.culled_bragg_times = self.bragg_times
      self.culled_distances = self.distances
      self.culled_sifoils = self.sifoils
      self.culled_wavelengths = self.wavelengths
      self.culled_indexed = self.indexed
      return

    self.culled_braggs = flex.double()
    self.culled_bragg_times = flex.double()
    self.culled_distances = flex.double()
    self.culled_sifoils = flex.double()
    self.culled_wavelengths = flex.double()
    self.culled_indexed = flex.bool()

    for i in range(count):
      braggs =  self.braggs[i*int(window):(i+1)*int(window)]
      idx = int(i*window) + flex.max_index(braggs)
      self.culled_braggs     .append(self.braggs[idx])
      self.culled_bragg_times.append(self.bragg_times[idx])
      self.culled_distances  .append(self.distances[idx])
      self.culled_sifoils    .append(self.sifoils[idx])
      self.culled_wavelengths.append(self.wavelengths[idx])
      self.culled_indexed    .append(self.indexed[idx])
Exemple #6
0
  def _filter_maximum_centroid(self, coords, values, spots, cpos):
    '''Filter the reflections by the distance between the maximum pixel
    value and the centroid position. If the centroid is a greater than the
    maximum separation from maximum pixel (in pixel coords) then discard.

    Params:
        coords The list of coordinates
        values The list of values
        cpos The list of centroids

    Returns:
        An index list of valid spots

    '''
    from scitbx.array_family import flex
    from scitbx import matrix
    index = []
    for si, (s, c) in enumerate(zip(spots, cpos)):
      im = flex.max_index(flex.int([values[i] for i in s]))
      xc = matrix.col(c)
      xm = matrix.col(coords[s[im]])
      if (xc - xm).length() <= self._max_separation:
        index.append(si)

    # Return the list of indices
    return index
Exemple #7
0
 def normalize(self, q, curve):
     last_height = flex.mean(curve[curve.size() - 10:curve.size() - 1])
     funct = q / flex.max(q) * last_height
     d = curve - funct
     max_index = flex.max_index(d)
     loc = q[max_index]
     scale = curve[max_index]
     return loc, scale
Exemple #8
0
    def _determine_dimensions(self):
        if self.params.dimensions is Auto and self.target.dim == 2:
            self.params.dimensions = 2
        elif self.params.dimensions is Auto:
            logger.info("=" * 80)
            logger.info(
                "\nAutomatic determination of number of dimensions for analysis"
            )
            dimensions = []
            functional = []
            termination_params = copy.deepcopy(self.params.termination_params)
            termination_params.max_iterations = min(
                20, termination_params.max_iterations
            )
            for dim in range(1, self.target.dim + 1):
                logger.debug("Testing dimension: %i", dim)
                self.target.set_dimensions(dim)
                self._optimise(termination_params)
                dimensions.append(dim)
                functional.append(self.minimizer.f)

            # Find the elbow point of the curve, in the same manner as that used by
            # distl spotfinder for resolution method 1 (Zhang et al 2006).
            # See also dials/algorithms/spot_finding/per_image_analysis.py

            x = flex.double(dimensions)
            y = flex.double(functional)
            slopes = (y[-1] - y[:-1]) / (x[-1] - x[:-1])
            p_m = flex.min_index(slopes)

            x1 = matrix.col((x[p_m], y[p_m]))
            x2 = matrix.col((x[-1], y[-1]))

            gaps = flex.double()
            v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize()

            for i in range(p_m, len(x)):
                x0 = matrix.col((x[i], y[i]))
                r = x1 - x0
                g = abs(v.dot(r))
                gaps.append(g)

            p_g = flex.max_index(gaps)

            x_g = x[p_g + p_m]

            logger.info(
                dials.util.tabulate(
                    zip(dimensions, functional), headers=("Dimensions", "Functional")
                )
            )
            logger.info("Best number of dimensions: %i" % x_g)
            self.target.set_dimensions(int(x_g))
            logger.info("Using %i dimensions for analysis" % self.target.dim)
  def __init__(O, points, epsilon=1e-2):
    """\
Computation of Minimum-Volume Covering Ellipsoid using the Khachiyan Algorithm.
Based on a Python implementation by Raj Rajashankar (ANL, Nov 2011),
which in turn was based on a Matlab script by Nima Moshtagh (2009,
http://stackoverflow.com/questions/1768197/bounding-ellipse/1768440#1768440).

Caveats:
  - center and radii are correct, but rotation may permute axes
  - scales with the square of the number of points
"""
    d = 3 # d is the dimension
    n = points.size()
    assert n > 0
    #
    from scitbx.array_family import flex
    p = points.as_double()
    p.reshape(flex.grid(n, 3))
    p = p.matrix_transpose()
    q = p.deep_copy()
    q.resize(flex.grid(4, n), 1)
    #
    u = flex.double(n, 1/n)
    umx = flex.double(flex.grid(n, n), 0)
    #
    err = epsilon + 1
    while (err > epsilon):
      umx.matrix_diagonal_set_in_place(u)
      x_inv = q.matrix_multiply(umx).matrix_multiply_transpose(
        q).matrix_inversion()
      m = q.matrix_transpose_multiply(
        x_inv).matrix_multiply(q).matrix_diagonal()
      j = flex.max_index(m)
      maximum = m[j]
      ascent_step_size = (maximum-d-1)/((d+1)*(maximum-1))
      new_u = (1 - ascent_step_size) * u
      new_u[j] += ascent_step_size
      err = flex.sum_sq(new_u - u)**0.5
      u = new_u
    #
    center = p.matrix_multiply(u)
    umx.matrix_diagonal_set_in_place(u)
    t1 = p.matrix_multiply(umx).matrix_multiply_transpose(p)
    t2 = center.matrix_outer_product(center)
    a = (t1 - t2).matrix_inversion() / d
    #
    import scitbx.linalg.svd
    svd = scitbx.linalg.svd.real(a, accumulate_u=False, accumulate_v=True)
    size = 1.0/flex.sqrt(svd.sigma)
    from scitbx import matrix
    O.center = matrix.col(center)
    O.radii = matrix.col(size)
    O.rotation = matrix.sqr(svd.v)
Exemple #10
0
def plot_centroid_weights_histograms(reflections, n_slots=50):
    from matplotlib import pyplot
    from scitbx.array_family import flex

    variances = flex.vec3_double([r.centroid_variance for r in reflections])
    vx, vy, vz = variances.parts()
    idx = (vx > 0).__and__(vy > 0).__and__(vz > 0)
    vx = vx.select(idx)
    vy = vy.select(idx)
    vz = vz.select(idx)
    wx = 1 / vx
    wy = 1 / vy
    wz = 1 / vz
    wx = flex.log(wx)
    wy = flex.log(wy)
    wz = flex.log(wz)
    hx = flex.histogram(wx, n_slots=n_slots)
    hy = flex.histogram(wy, n_slots=n_slots)
    hz = flex.histogram(wz, n_slots=n_slots)
    fig = pyplot.figure()

    idx2 = flex.max_index(wx)
    idx3 = flex.int(range(len(reflections))).select(idx)[idx2]
    print(reflections[idx3])
    return

    # outliers = reflections.select(wx > 50)
    # for refl in outliers:
    # print refl

    for i, h in enumerate([hx, hy, hz]):
        ax = fig.add_subplot(311 + i)

        slots = h.slots().as_double()
        bins, data = hist_outline(h)
        log_scale = True
        if log_scale:
            data.set_selected(
                data == 0, 0.1
            )  # otherwise lines don't get drawn when we have some empty bins
            ax.set_yscale("log")
        ax.plot(bins, data, "-k", linewidth=2)
        # pyplot.suptitle(title)
        data_min = min(
            [slot.low_cutoff for slot in h.slot_infos() if slot.n > 0])
        data_max = max(
            [slot.low_cutoff for slot in h.slot_infos() if slot.n > 0])
        ax.set_xlim(data_min, data_max + h.slot_width())
    pyplot.show()
Exemple #11
0
    def fit_3_gaussians(self, histogram):
        fitted_gaussians = []
        low_idx = self.work_params.fit_limits[0]
        high_idx = self.work_params.fit_limits[1]

        slot_centers = flex.double(
            range(self.work_params.first_slot_value,
                  self.work_params.first_slot_value + len(histogram)))
        free_x = slot_centers[low_idx:high_idx]

        slots = flex.double(histogram.astype(np.float64))
        free_y = slots[low_idx:high_idx]
        total_population = flex.sum(free_y)

        # zero_mean = 0. # originally intended mean=0
        maxidx = flex.max_index(
            free_y)  # but if dark subtraction (pedstal correction) is off
        zero_mean = free_x[maxidx]  # use this non-zero maximum instead
        zero_amplitude = flex.max(free_y)
        assert 1. / zero_amplitude  #guard against division by zero
        zero_sigma = self.work_params.gaussian_3.zero_sigma

        inelastic_amplitude = 0.001
        elastic_amplitude = 0.001
        elastic_sigma = self.work_params.gaussian_3.zero_sigma
        #elastic_mean = zero_mean+ zero_sigma*self.work_params.gaussian_3.elastic_gain_to_sigma #**

        helper = self.helper_3_gaussian_factory(
            initial_estimates=(zero_mean, 1.0, zero_sigma, inelastic_amplitude,
                               elastic_amplitude, elastic_sigma),
            constants=flex.double((
                self.work_params.gaussian_3.inelastic_gain_to_sigma,
                self.work_params.gaussian_3.elastic_gain_to_sigma,
            )),
            free_x=free_x,
            free_y=free_y / zero_amplitude
        )  # put y values on 0->1 scale for normal eqn solving
        helper.restart()
        iterations = normal_eqns_solving.levenberg_marquardt_iterations(
            non_linear_ls=helper, n_max_iterations=7, gradient_threshold=1.E-3)

        fitted_gaussians = helper.as_gaussians()
        for item in fitted_gaussians:
            item.params = (item.params[0] * zero_amplitude, item.params[1],
                           item.params[2])  # convert back to full scale
        return fitted_gaussians
Exemple #12
0
 def get_stats(self):
     # find median energy:
     cumulative_total = flex.sum(self.corrected_response)
     max_index = flex.max_index(self.corrected_response)
     self.mode = self.deduced_energy[max_index]
     half_cum = cumulative_total / 2.
     running_cum = 0
     for idx in range(len(self.deduced_energy)):
         running_cum += self.corrected_response[idx]
         if running_cum > half_cum: break
     self.median = self.deduced_energy[idx]
     self.max_response = flex.max(self.corrected_response)
     n_channels_fwhm = (self.corrected_response >
                        (0.5 * self.max_response)).count(True)
     self.fwhm_eV = n_channels_fwhm * 10.  # 10 eV/channel
     delta_E_over_E = self.fwhm_eV / self.median
     print("delta E / E = %.5f" % delta_E_over_E)
Exemple #13
0
    def _determine_dimensions(self):
        if self.params.dimensions is Auto and self.target.dim == 2:
            self.params.dimensions = 2
        elif self.params.dimensions is Auto:
            dimensions = []
            functional = []
            explained_variance = []
            explained_variance_ratio = []
            for dim in range(1, self.target.dim + 1):
                self.target.set_dimensions(dim)
                self._optimise()
                logger.info("Functional: %g" % self.minimizer.f)
                self._principal_component_analysis()
                dimensions.append(dim)
                functional.append(self.minimizer.f)
                explained_variance.append(self.explained_variance)
                explained_variance_ratio.append(self.explained_variance_ratio)

            # Find the elbow point of the curve, in the same manner as that used by
            # distl spotfinder for resolution method 1 (Zhang et al 2006).
            # See also dials/algorithms/spot_finding/per_image_analysis.py

            x = flex.double(dimensions)
            y = flex.double(functional)
            slopes = (y[-1] - y[:-1]) / (x[-1] - x[:-1])
            p_m = flex.min_index(slopes)

            x1 = matrix.col((x[p_m], y[p_m]))
            x2 = matrix.col((x[-1], y[-1]))

            gaps = flex.double()
            v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize()

            for i in range(p_m, len(x)):
                x0 = matrix.col((x[i], y[i]))
                r = x1 - x0
                g = abs(v.dot(r))
                gaps.append(g)

            p_g = flex.max_index(gaps)

            x_g = x[p_g + p_m]

            logger.info("Best number of dimensions: %i" % x_g)
            self.target.set_dimensions(int(x_g))
Exemple #14
0
def plot_centroid_weights_histograms(reflections, n_slots=50):
  from matplotlib import pyplot
  from scitbx.array_family import flex
  variances = flex.vec3_double([r.centroid_variance for r in reflections])
  vx, vy, vz = variances.parts()
  idx = (vx > 0).__and__(vy > 0).__and__(vz > 0)
  vx = vx.select(idx)
  vy = vy.select(idx)
  vz = vz.select(idx)
  wx = 1/vx
  wy = 1/vy
  wz = 1/vz
  wx = flex.log(wx)
  wy = flex.log(wy)
  wz = flex.log(wz)
  hx = flex.histogram(wx, n_slots=n_slots)
  hy = flex.histogram(wy, n_slots=n_slots)
  hz = flex.histogram(wz, n_slots=n_slots)
  fig = pyplot.figure()

  idx2 = flex.max_index(wx)
  idx3 = flex.int(range(len(reflections))).select(idx)[idx2]
  print reflections[idx3]
  return

  #outliers = reflections.select(wx > 50)
  #for refl in outliers:
    #print refl

  for i, h in enumerate([hx, hy, hz]):
    ax = fig.add_subplot(311+i)

    slots = h.slots().as_double()
    bins, data = hist_outline(h)
    log_scale = True
    if log_scale:
      data.set_selected(data == 0, 0.1) # otherwise lines don't get drawn when we have some empty bins
      ax.set_yscale("log")
    ax.plot(bins, data, '-k', linewidth=2)
    #pyplot.suptitle(title)
    data_min = min([slot.low_cutoff for slot in h.slot_infos() if slot.n > 0])
    data_max = max([slot.low_cutoff for slot in h.slot_infos() if slot.n > 0])
    ax.set_xlim(data_min, data_max+h.slot_width())
  pyplot.show()
Exemple #15
0
    def fit_one_histogram_two_gaussians(self, histogram):
        fitted_gaussians = []
        GAIN_TO_SIGMA = self.work_params.fudge_factor.gain_to_sigma
        low_idx = self.work_params.fit_limits[0]
        high_idx = self.work_params.fit_limits[1]

        slot_centers = flex.double(
            range(self.work_params.first_slot_value,
                  self.work_params.first_slot_value + len(histogram)))
        free_x = slot_centers[low_idx:high_idx]
        #print list(free_x)

        slots = flex.double(histogram.astype(np.float64))
        free_y = slots[low_idx:high_idx]

        # zero_mean = 0. # originally intended mean=0
        maxidx = flex.max_index(
            free_y)  # but if dark subtraction (pedstal correction) is off
        zero_mean = free_x[maxidx]  # use this non-zero maximum instead

        zero_amplitude = flex.max(free_y)

        assert 1. / zero_amplitude  #guard against division by zero
        total_population = flex.sum(free_y)
        zero_sigma = self.work_params.estimated_gain / GAIN_TO_SIGMA
        one_amplitude = 0.001
        helper = self.per_pixel_helper_factory(
            initial_estimates=(zero_mean, 1.0, zero_sigma, one_amplitude),
            GAIN_TO_SIGMA=GAIN_TO_SIGMA,
            free_x=free_x,
            free_y=free_y / zero_amplitude
        )  # put y values on 0->1 scale for normal eqn solving
        helper.restart()
        iterations = normal_eqns_solving.levenberg_marquardt_iterations(
            non_linear_ls=helper, n_max_iterations=7, gradient_threshold=1.E-3)
        print("current values after iterations", list(helper.x), end=' ')

        fitted_gaussians = helper.as_gaussians()
        for item in fitted_gaussians:
            item.params = (item.params[0] * zero_amplitude, item.params[1],
                           item.params[2])  # convert back to full scale
        return fitted_gaussians
  def fit_3_gaussians(self,histogram):
    fitted_gaussians = []
    low_idx = self.work_params.fit_limits[0]
    high_idx = self.work_params.fit_limits[1]

    slot_centers = flex.double(xrange(self.work_params.first_slot_value,
                                      self.work_params.first_slot_value + len(histogram)))
    free_x = slot_centers[low_idx:high_idx]

    slots = flex.double(histogram.astype(np.float64))
    free_y = slots[low_idx:high_idx]
    total_population = flex.sum(free_y)

    # zero_mean = 0. # originally intended mean=0
    maxidx = flex.max_index(free_y) # but if dark subtraction (pedstal correction) is off
    zero_mean = free_x[maxidx] # use this non-zero maximum instead
    zero_amplitude = flex.max(free_y)
    assert 1./zero_amplitude #guard against division by zero
    zero_sigma = self.work_params.gaussian_3.zero_sigma

    inelastic_amplitude = 0.001
    elastic_amplitude = 0.001
    elastic_sigma = self.work_params.gaussian_3.zero_sigma
    #elastic_mean = zero_mean+ zero_sigma*self.work_params.gaussian_3.elastic_gain_to_sigma #**

    helper = self.helper_3_gaussian_factory(initial_estimates =
      (zero_mean, 1.0, zero_sigma, inelastic_amplitude, elastic_amplitude, elastic_sigma),
      constants=flex.double((self.work_params.gaussian_3.inelastic_gain_to_sigma,
                             self.work_params.gaussian_3.elastic_gain_to_sigma,
                             )),
      free_x = free_x,
      free_y = free_y/zero_amplitude) # put y values on 0->1 scale for normal eqn solving
    helper.restart()
    iterations = normal_eqns_solving.levenberg_marquardt_iterations(
          non_linear_ls = helper,
          n_max_iterations = 7,
          gradient_threshold = 1.E-3)

    fitted_gaussians = helper.as_gaussians()
    for item in fitted_gaussians: item.params = (item.params[0] * zero_amplitude,
                                  item.params[1], item.params[2]) # convert back to full scale
    return fitted_gaussians
  def __init__(self, x_obs, y_obs):
    """Fit a gaussian to points (x_obs, y_obs):
         f(x) = A exp(-(x - mu)**2 / (2 * sigma**2))

       :param x_obs: x-coordinates of the data
       :type x_obs: flex.double
       :param y_obs: y-coordinates of the data
       :type y_obs: flex.double
    """
    self.x_obs = x_obs
    self.y_obs = y_obs
    max_i = flex.max_index(y_obs)
    # quick estimate of scale and mean to give the optimiser a helping hand
    scale = y_obs[max_i]
    mu = x_obs[max_i]
    sigma = 1 # can we make a simple estimate of sigma too?
    fit = gaussian_fit(x_obs, y_obs, [gaussian(scale, mu, sigma)])
    self.a = fit.gaussians[0].a
    self.b = fit.gaussians[0].b
    self.c = fit.gaussians[0].c
Exemple #18
0
    def __init__(self, x_obs, y_obs):
        """Fit a gaussian to points (x_obs, y_obs):
         f(x) = A exp(-(x - mu)**2 / (2 * sigma**2))

       :param x_obs: x-coordinates of the data
       :type x_obs: flex.double
       :param y_obs: y-coordinates of the data
       :type y_obs: flex.double
    """
        self.x_obs = x_obs
        self.y_obs = y_obs
        max_i = flex.max_index(y_obs)
        # quick estimate of scale and mean to give the optimiser a helping hand
        scale = y_obs[max_i]
        mu = x_obs[max_i]
        sigma = 1  # can we make a simple estimate of sigma too?
        fit = gaussian_fit(x_obs, y_obs, [gaussian(scale, mu, sigma)])
        self.a = fit.gaussians[0].a
        self.b = fit.gaussians[0].b
        self.c = fit.gaussians[0].c
  def fit_one_histogram_two_gaussians(self,histogram):
    fitted_gaussians = []
    GAIN_TO_SIGMA = self.work_params.fudge_factor.gain_to_sigma
    low_idx = self.work_params.fit_limits[0]
    high_idx = self.work_params.fit_limits[1]

    slot_centers = flex.double(xrange(self.work_params.first_slot_value,
                                      self.work_params.first_slot_value + len(histogram)))
    free_x = slot_centers[low_idx:high_idx]
    #print list(free_x)

    slots = flex.double(histogram.astype(np.float64))
    free_y = slots[low_idx:high_idx]

    # zero_mean = 0. # originally intended mean=0
    maxidx = flex.max_index(free_y) # but if dark subtraction (pedstal correction) is off
    zero_mean = free_x[maxidx] # use this non-zero maximum instead

    zero_amplitude = flex.max(free_y)

    assert 1./zero_amplitude #guard against division by zero
    total_population = flex.sum(free_y)
    zero_sigma = self.work_params.estimated_gain / GAIN_TO_SIGMA
    one_amplitude = 0.001
    helper = self.per_pixel_helper_factory(initial_estimates =
      (zero_mean, 1.0, zero_sigma, one_amplitude),
      GAIN_TO_SIGMA=GAIN_TO_SIGMA,
      free_x = free_x,
      free_y = free_y/zero_amplitude) # put y values on 0->1 scale for normal eqn solving
    helper.restart()
    iterations = normal_eqns_solving.levenberg_marquardt_iterations(
          non_linear_ls = helper,
          n_max_iterations = 7,
          gradient_threshold = 1.E-3)
    print "current values after iterations", list(helper.x),

    fitted_gaussians = helper.as_gaussians()
    for item in fitted_gaussians: item.params = (item.params[0] * zero_amplitude,
                                  item.params[1], item.params[2]) # convert back to full scale
    return fitted_gaussians
Exemple #20
0
def reduce_raw_data(raw_data, qmax, bandwidth, level=0.05, q_background=None):
    print
    print " ====  Data reduction ==== "
    print
    print "  Preprocessing of data increases efficiency of shape retrieval procedure."
    print
    print "   -  Interpolation stepsize                           :  %4.3e" % bandwidth
    print "   -  Uniform density criteria:  level is set to       :  %4.3e" % level
    print "                                 maximum q to consider :  %4.3e" % qmax
    qmin_indx = flex.max_index(raw_data.i)
    qmin = raw_data.q[qmin_indx]
    new_data = get_q_array_uniform_body(raw_data,
                                        q_min=qmin,
                                        q_max=qmax,
                                        level=level)
    qmax = new_data.q[-1]
    if qmax > raw_data.q[-1]:
        qmax = raw_data.q[-1]
    print "      Resulting q range to use in  search:   q start   :  %4.3e" % qmin
    print "                                             q stop    :  %4.3e" % qmax
    print
    raw_q = raw_data.q[qmin_indx:]
    raw_i = raw_data.i[qmin_indx:]
    raw_s = raw_data.s[qmin_indx:]
    ### Take care of the background (set zero at very high q) ###
    if (q_background is not None):
        cutoff = flex.bool(raw_q > q_background)
        q_bk_indx = flex.last_index(cutoff, False)
        if (q_bk_indx < raw_q.size()):
            bkgrd = flex.mean(raw_i[q_bk_indx:])
            print "Background correction: I=I-background, where background=", bkgrd
            raw_i = flex.abs(raw_i - bkgrd)

    q = flex.double(range(int(
        (qmax - qmin) / bandwidth) + 1)) * bandwidth + qmin
    raw_data.i = flex.linear_interpolation(raw_q, raw_i, q)
    raw_data.s = flex.linear_interpolation(raw_q, raw_s, q)
    raw_data.q = q

    return raw_data
  def finite_difference_test(self,g):
    """
    Compare analytical and finite differences gradients.

    finite_grad_difference_val = abs(analytical - finite differences)
    """
    g = g.as_double()
    # find the index of the max gradient value
    i_g_max = flex.max_index(flex.abs(g))
    # Set displacement for finite gradient calculation
    d = max(self.x[i_g_max]*1e-6,1e-6)
    # calc t(x+d)
    self.x[i_g_max] += d
    t1,_ = self.compute_functional_and_gradients(compute_gradients=False)
    # calc t(x-d)
    self.x[i_g_max] -= 2*d
    t2,_ = self.compute_functional_and_gradients(compute_gradients=False)
    # Return fmodel to the correct coordinates values
    self.x[i_g_max] += d
    self.update_xray_structure()
    finite_gard = (t1-t2)/(d*2)
    self.finite_grad_difference_val = abs(g[i_g_max] - finite_gard)
Exemple #22
0
    def finite_difference_test(self, g):
        """
    Compare analytical and finite differences gradients.

    finite_grad_difference_val = abs(analytical - finite differences)
    """
        g = g.as_double()
        # find the index of the max gradient value
        i_g_max = flex.max_index(flex.abs(g))
        # Set displacement for finite gradient calculation
        d = max(self.x[i_g_max] * 1e-6, 1e-6)
        # calc t(x+d)
        self.x[i_g_max] += d
        t1, _ = self.compute_functional_and_gradients(compute_gradients=False)
        # calc t(x-d)
        self.x[i_g_max] -= 2 * d
        t2, _ = self.compute_functional_and_gradients(compute_gradients=False)
        # Return fmodel to the correct coordinates values
        self.x[i_g_max] += d
        self.update_xray_structure()
        finite_gard = (t1 - t2) / (d * 2)
        self.finite_grad_difference_val = abs(g[i_g_max] - finite_gard)
Exemple #23
0
  def common_mode(self, img, stddev, mask):
    """The common_mode() function returns the mode of image stored in
    the array pointed to by @p img.  @p mask must be such that the @p
    stddev at the selected pixels is greater than zero.

    @param img    2D integer array of the image
    @param stddev 2D integer array of the standard deviation of each
                  pixel in @p img
    @param mask   2D Boolean array, @c True if the pixel is to be
                  included, @c False otherwise
    @return       Mode of the image, as a real number
    """

    # Flatten the image and take out inactive pixels XXX because we
    # cannot take means and medians of 2D arrays?
    img_1d = img.as_1d().select(mask.as_1d()).as_double()
    assert img_1d.size() > 0

    if (self.common_mode_correction == "mean"):
      # The common mode is approximated by the mean of the pixels with
      # signal-to-noise ratio less than a given threshold.  XXX Breaks
      # if the selection is empty!
      THRESHOLD_SNR = 2
      img_snr = img_1d / stddev.as_double().as_1d().select(mask.as_1d())
      return (flex.mean(img_1d.select(img_snr < THRESHOLD_SNR)))

    elif (self.common_mode_correction == "median"):
      return (flex.median(img_1d))

    # Identify the common-mode correction as the peak histogram of the
    # histogram of pixel values (the "standard" common-mode correction, as
    # previously implemented in this class).
    hist_min = -40
    hist_max = 40
    n_slots = 100

    hist = flex.histogram(img_1d, hist_min, hist_max, n_slots=n_slots)
    slots = hist.slots()
    i = flex.max_index(slots)
    common_mode = list(hist.slot_infos())[i].center()

    if (self.common_mode_correction == "mode"):
      return (common_mode)

    # Determine the common-mode correction from the peak of a single
    # Gaussian function fitted to the histogram.
    from scitbx.math.curve_fitting import single_gaussian_fit
    x = hist.slot_centers()
    y = slots.as_double()
    fit = single_gaussian_fit(x, y)
    scale, mu, sigma = fit.a, fit.b, fit.c
    self.logger.debug("fitted gaussian: mu=%.3f, sigma=%.3f" %(mu, sigma))
    mode = common_mode
    common_mode = mu
    if abs(mode-common_mode) > 1000: common_mode = mode # XXX
    self.logger.debug("delta common mode corrections: %.3f" %(mode-common_mode))

    if 0 and abs(mode-common_mode) > 0:
      #if 0 and skew > 0.5:
      # view histogram and fitted gaussian
      from numpy import exp
      from matplotlib import pyplot
      x_all = x
      n, bins, patches = pyplot.hist(section_img.as_1d().as_numpy_array(), bins=n_slots, range=(hist_min, hist_max))
      y_all = scale * flex.exp(-flex.pow2(x_all-mu) / (2 * sigma**2))
      scale = slots[flex.max_index(slots)]
      y_all *= scale/flex.max(y_all)
      pyplot.plot(x_all, y_all)
      pyplot.show()

    return (common_mode)
Exemple #24
0
    def _silhouette_analysis(self, cluster_labels, linkage_matrix, n_clusters,
                             min_silhouette_score):
        """Compare valid equal-sized clustering using silhouette scores.

        Args:
          cluster_labels (scitbx.array_family.flex.int):
          linkage_matrix (numpy.ndarray): The hierarchical clustering of centroids of the
            initial clustering as produced by
            :func:`scipy.cluster.hierarchy.linkage`.
          n_clusters (int): Optionally override the automatic determination of the
            number of clusters.
          min_silhouette_score (float): The minimum silhouette score to be used
            in automatic determination of the number of clusters.

        Returns:
          cluster_labels (scitbx.array_family.flex.int): A label for each coordinate.
        """
        eps = 1e-6
        X = self.coords.as_numpy_array()

        cluster_labels_input = cluster_labels
        distances = linkage_matrix[::, 2]
        distances = np.insert(distances, 0, 0)
        silhouette_scores = flex.double()
        thresholds = flex.double()
        threshold_n_clusters = flex.size_t()
        for threshold in distances[1:]:
            cluster_labels = cluster_labels_input.deep_copy()
            labels = hierarchy.fcluster(linkage_matrix,
                                        threshold - eps,
                                        criterion="distance").tolist()
            counts = [labels.count(l) for l in set(labels)]
            if len(set(counts)) > 1:
                # only equal-sized clusters are valid
                continue

            n = len(set(labels))
            if n == 1:
                continue
            elif n_clusters is not Auto and n != n_clusters:
                continue
            for i in range(len(labels)):
                cluster_labels.set_selected(cluster_labels_input == i,
                                            int(labels[i] - 1))
            if len(set(cluster_labels)) == X.shape[0]:
                # silhouette coefficient not defined if 1 dataset per cluster
                # not sure what the default value should be
                sample_silhouette_values = np.full(cluster_labels.size(), 0)
            else:
                # Compute the silhouette scores for each sample
                sample_silhouette_values = metrics.silhouette_samples(
                    X, cluster_labels.as_numpy_array(), metric="cosine")
            silhouette_avg = sample_silhouette_values.mean()
            silhouette_scores.append(silhouette_avg)
            thresholds.append(threshold)
            threshold_n_clusters.append(n)

            count_negative = (sample_silhouette_values < 0).sum()
            logger.info("Clustering:")
            logger.info("  Number of clusters: %i" % n)
            logger.info("  Threshold score: %.3f (%.1f deg)" %
                        (threshold, math.degrees(math.acos(1 - threshold))))
            logger.info("  Silhouette score: %.3f" % silhouette_avg)
            logger.info("  -ve silhouette scores: %.1f%%" %
                        (100 * count_negative / sample_silhouette_values.size))

        if n_clusters is Auto:
            idx = flex.max_index(silhouette_scores)
        else:
            idx = flex.first_index(threshold_n_clusters, n_clusters)
            if idx is None:
                raise Sorry("No valid clustering with %i clusters" %
                            n_clusters)

        if n_clusters is Auto and silhouette_scores[idx] < min_silhouette_score:
            # assume single cluster
            cluster_labels = flex.int(cluster_labels.size(), 0)
        else:
            threshold = thresholds[idx] - eps
            labels = hierarchy.fcluster(linkage_matrix,
                                        threshold,
                                        criterion="distance")
            cluster_labels = flex.double(cluster_labels.size(), -1)
            for i in range(len(labels)):
                cluster_labels.set_selected(cluster_labels_input == i,
                                            float(labels[i] - 1))

        return cluster_labels, threshold
def run(args):
    master_phil = iotbx.phil.parse(master_phil_str)
    processed = iotbx.phil.process_command_line(args=args,
                                                master_string=master_phil_str)
    args = processed.remaining_args
    work_params = processed.work.extract()

    x_offsets = work_params.x_offsets
    bg_range_min, bg_range_max = work_params.bg_range
    if work_params.plot_range is not None:
        x_min, x_max = work_params.plot_range
    else:
        x_min, x_max = (0, 385)

    print bg_range_min, bg_range_max
    if x_offsets is None:
        x_offsets = [0] * len(args)
    legend = work_params.legend
    linewidth = 2
    fontsize = 26
    xy_pairs = []
    colours = [
        "cornflowerblue", "darkmagenta", "darkgreen", "black", "red", "blue",
        "pink"
    ]
    colours[2] = "orangered"
    colours[1] = "olivedrab"
    min_background = 1e16
    #x_min, x_max = (0, 391)
    #x_min, x_max = (0, 360)
    #x_min, x_max = (200, 360)

    for i, filename in enumerate(args):
        print filename
        f = open(filename, 'rb')
        x, y = zip(*[
            line.split() for line in f.readlines() if not line.startswith("#")
        ])
        x = flex.double(flex.std_string(x))
        y = flex.double(flex.std_string(y))

        if work_params.smoothing.method is not None:
            savitzky_golay_half_window = work_params.smoothing.savitzky_golay.half_window
            savitzky_golay_degree = work_params.smoothing.savitzky_golay.degree
            fourier_cutoff = work_params.smoothing.fourier_filter_cutoff

            method = work_params.smoothing.method
            if method == "fourier_filter":
                assert work_params.smoothing.fourier_filter_cutoff is not None

            if method == "savitzky_golay":
                x, y = smoothing.savitzky_golay_filter(
                    x, y, savitzky_golay_half_window, savitzky_golay_degree)

            elif method == "fourier_filter":
                x, y = smooth_spectrum.fourier_filter(
                    x, y, cutoff_frequency=fourier_cutoff)

        x += x_offsets[i]
        y = y.select((x <= x_max) & (x > 0))
        x = x.select((x <= x_max) & (x > 0))
        bg_sel = (x > bg_range_min) & (x < bg_range_max)
        xy_pairs.append((x, y))
        min_background = min(min_background,
                             flex.mean(y.select(bg_sel)) / flex.max(y))
        y -= min_background
        print "Peak maximum at: %i" % int(x[flex.max_index(y)])
    for i, filename in enumerate(args):
        if legend is None:
            label = filename
        else:
            print legend
            assert len(legend) == len(args)
            label = legend[i]
        x, y = xy_pairs[i]
        if i == -1:
            x, y = interpolate(x, y)
            x, y = savitzky_golay_filter(x, y)
        #if i == 0:
        #y -= 10
        bg_sel = (x > bg_range_min) & (x < bg_range_max)
        y -= (flex.mean(y.select(bg_sel)) - min_background * flex.max(y))
        #y -= flex.min(y)
        y_min = flex.min(y.select(bg_sel))
        if i == -2:
            y += 0.2 * flex.max(y)
        print "minimum at: %i" % int(x[flex.min_index(y)]), flex.min(y)
        #print "fwhm: %.2f" %full_width_half_max(x, y)
        y /= flex.max(y)
        if len(colours) > i:
            pyplot.plot(x,
                        y,
                        label=label,
                        linewidth=linewidth,
                        color=colours[i])
        else:
            pyplot.plot(x, y, label=label, linewidth=linewidth)
    pyplot.ylabel("Intensity", fontsize=fontsize)
    pyplot.xlabel("Pixel column", fontsize=fontsize)
    if i > 0:
        # For some reason the line below causes a floating point error if we only
        # have one plot (i.e. i==0)
        legend = pyplot.legend(loc=2)
        for t in legend.get_texts():
            t.set_fontsize(fontsize)
    axes = pyplot.axes()
    for tick in axes.xaxis.get_ticklabels():
        tick.set_fontsize(20)
    for tick in axes.yaxis.get_ticklabels():
        tick.set_fontsize(20)
    pyplot.ylim(0, 1)
    pyplot.xlim(x_min, x_max)
    ax = pyplot.axes()
    #ax.xaxis.set_minor_locator(pyplot.MultipleLocator(5))
    #ax.yaxis.set_major_locator(pyplot.MultipleLocator(0.1))
    #ax.yaxis.set_minor_locator(pyplot.MultipleLocator(0.05))
    pyplot.show()
def estimate_global_threshold(image, mask=None):

  from scitbx.array_family import flex
  from scitbx import matrix

  n_above_threshold = flex.size_t()
  threshold = flex.double()
  for i in range(1, 20):
    g = 1.5**i
    g = int(g)
    n_above_threshold.append((image > g).count(True))
    threshold.append(g)

  # Find the elbow point of the curve, in the same manner as that used by
  # distl spotfinder for resolution method 1 (Zhang et al 2006).
  # See also dials/algorithms/spot_finding/per_image_analysis.py

  x = threshold.as_double()
  y = n_above_threshold.as_double()
  slopes = (y[-1] - y[:-1])/(x[-1] - x[:-1])
  p_m = flex.min_index(slopes)

  x1 = matrix.col((x[p_m], y[p_m]))
  x2 = matrix.col((x[-1], y[-1]))

  gaps = flex.double()
  v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize()

  for i in range(p_m, len(x)):
    x0 = matrix.col((x[i], y[i]))
    r = x1 - x0
    g = abs(v.dot(r))
    gaps.append(g)

  mv = flex.mean_and_variance(gaps)
  s = mv.unweighted_sample_standard_deviation()

  p_k = flex.max_index(gaps)
  g_k = gaps[p_k]
  p_g = p_k

  #x_g = x[p_g + p_m]
  #y_g = y[p_g + p_m]

  #x_g = x[p_g + p_m -1]
  #y_g = y[p_g + p_m -1]

  # more conservative, choose point 2 left of the elbow point
  x_g = x[p_g + p_m -2]
  y_g = y[p_g + p_m -2]

  #from matplotlib import pyplot
  #pyplot.scatter(threshold, n_above_threshold)
  ##for i in range(len(threshold)-1):
    ##pyplot.plot([threshold[i], threshold[-1]],
                ##[n_above_threshold[i], n_above_threshold[-1]])
  ##for i in range(1, len(threshold)):
    ##pyplot.plot([threshold[0], threshold[i]],
                ##[n_above_threshold[0], n_above_threshold[i]])
  #pyplot.plot(
    #[threshold[p_m], threshold[-1]], [n_above_threshold[p_m], n_above_threshold[-1]])
  #pyplot.plot(
    #[x_g, threshold[-1]], [y_g, n_above_threshold[-1]])
  #pyplot.show()

  return x_g
def estimate_global_threshold(image, mask=None, plot=False):
    n_above_threshold = flex.size_t()
    threshold = flex.double()
    for i in range(1, 20):
        g = 1.5**i
        g = int(g)
        n_above_threshold.append((image > g).count(True))
        threshold.append(g)

    # Find the elbow point of the curve, in the same manner as that used by
    # distl spotfinder for resolution method 1 (Zhang et al 2006).
    # See also dials/algorithms/spot_finding/per_image_analysis.py

    x = threshold.as_double()
    y = n_above_threshold.as_double()
    slopes = (y[-1] - y[:-1]) / (x[-1] - x[:-1])
    p_m = flex.min_index(slopes)

    x1 = matrix.col((x[p_m], y[p_m]))
    x2 = matrix.col((x[-1], y[-1]))

    gaps = flex.double()
    v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize()

    for i in range(p_m, len(x)):
        x0 = matrix.col((x[i], y[i]))
        r = x1 - x0
        g = abs(v.dot(r))
        gaps.append(g)

    p_g = flex.max_index(gaps)

    x_g_ = x[p_g + p_m]
    y_g_ = y[p_g + p_m]

    # more conservative, choose point 2 left of the elbow point
    x_g = x[p_g + p_m - 2]
    # y_g = y[p_g + p_m - 2]

    if plot:
        from matplotlib import pyplot

        pyplot.figure(figsize=(16, 12))
        pyplot.scatter(threshold, n_above_threshold, marker="+")
        # for i in range(len(threshold)-1):
        #  pyplot.plot([threshold[i], threshold[-1]],
        #              [n_above_threshold[i], n_above_threshold[-1]])
        # for i in range(1, len(threshold)):
        #  pyplot.plot([threshold[0], threshold[i]],
        #              [n_above_threshold[0], n_above_threshold[i]])
        pyplot.plot([x_g, x_g], pyplot.ylim())
        pyplot.plot(
            [threshold[p_m], threshold[-1]],
            [n_above_threshold[p_m], n_above_threshold[-1]],
        )
        pyplot.plot([x_g_, threshold[-1]], [y_g_, n_above_threshold[-1]])
        pyplot.xlabel("Threshold")
        pyplot.ylabel("Number of pixels above threshold")
        pyplot.savefig("global_threshold.png")
        pyplot.clf()

    return x_g
    def fit_one_histogram(self, pixel, n_gaussians=2):
        histogram = self.histograms[pixel]
        fitted_gaussians = []

        slot_centers = histogram.slot_centers()
        slots = histogram.slots().as_double()

        zero_peak_gaussian = None
        for i in range(n_gaussians):
            if i == 0:
                lower_threshold = -1000
                upper_threshold = 0.4 * self.estimated_gain
                mean = 0
                fit = self.single_peak_fit(
                    histogram,
                    lower_threshold,
                    upper_threshold,
                    mean,
                    zero_peak_gaussian=zero_peak_gaussian)
                hist_max = flex.max(histogram.slots())
                if abs(fit.functions[0].params[0] - hist_max) / hist_max > 0.1:
                    upper_threshold = 0.3 * self.estimated_gain
                    fit = self.single_peak_fit(
                        histogram,
                        lower_threshold,
                        upper_threshold,
                        mean,
                        zero_peak_gaussian=zero_peak_gaussian)
            else:
                y_obs = histogram.slots().as_double()
                x = histogram.slot_centers()
                y_calc = flex.double(y_obs.size(), 0)
                for g in fitted_gaussians:
                    y_calc += g(x)
                residual = y_obs - y_calc
                # triangular smoothing of residual to find peak position
                residual = sliding_average(residual)
                residual = sliding_average(residual)
                for n in (4, 5, 6, 7, 8):
                    #for n in (5, 6, 7, 8):
                    # we assume that the peaks are separated by at least n sigma
                    n_sigma = abs(n * fitted_gaussians[0].params[2])
                    slot_i = histogram.get_i_slot(
                        fitted_gaussians[i - 1].params[1] + n_sigma)
                    max_slot_i = flex.max_index(residual[slot_i:]) + slot_i
                    mean = slot_centers[max_slot_i]
                    lower_threshold = mean - 0.3 * (
                        mean - fitted_gaussians[0].params[1])
                    upper_threshold = mean + 0.4 * (
                        mean - fitted_gaussians[0].params[1])
                    #print lower_threshold, mean, upper_threshold
                    #zero_peak_gaussian = None
                    fit = self.single_peak_fit(
                        histogram,
                        lower_threshold,
                        upper_threshold,
                        mean,
                        zero_peak_gaussian=zero_peak_gaussian)
                    if (fit.functions[0].params[1] >
                            fitted_gaussians[-1].params[1]
                            and fit.functions[0].sigma >
                            0.5 * fitted_gaussians[-1].sigma
                            and (fit.functions[0].params[1] -
                                 fitted_gaussians[-1].params[1]) > n_sigma):
                        break
            fitted_gaussians += fit.functions
            if i == 0: zero_peak_gaussian = fit.functions[0]

        if len(fitted_gaussians) > 1:
            try:
                check_pixel_histogram_fit(histogram, fitted_gaussians)
            except PixelFitError, e:
                print "PixelFitError:", str(e)
            gain = fitted_gaussians[1].params[1] - fitted_gaussians[0].params[1]
            print "gain: %s" % gain
            zero_peak = fitted_gaussians[0].params[1]
            photon_threshold = 2 / 3
            n_single_photons = flex.sum(
                histogram.slots()[histogram.get_i_slot(photon_threshold *
                                                       gain + zero_peak):])
            n_double_photons = flex.sum(
                histogram.slots()[histogram.get_i_slot((1 + photon_threshold) *
                                                       gain + zero_peak):])
            n_single_photons -= n_double_photons
            print "n_single_photons: %i" % n_single_photons
            print "n_double_photons: %i" % n_double_photons
def run(args):
  master_phil = iotbx.phil.parse(master_phil_str)
  processed = iotbx.phil.process_command_line(
    args=args, master_string=master_phil_str)
  args = processed.remaining_args
  work_params = processed.work.extract()

  x_offsets = work_params.x_offsets
  bg_range_min, bg_range_max = work_params.bg_range
  if work_params.plot_range is not None:
    x_min, x_max = work_params.plot_range
  else:
    x_min, x_max = (0, 385)

  print bg_range_min, bg_range_max
  if x_offsets is None:
    x_offsets = [0]*len(args)
  legend = work_params.legend
  linewidth = 2
  fontsize = 26
  xy_pairs = []
  colours = ["cornflowerblue", "darkmagenta", "darkgreen", "black", "red", "blue", "pink"]
  colours[2] = "orangered"
  colours[1] = "olivedrab"
  min_background = 1e16
  #x_min, x_max = (0, 391)
  #x_min, x_max = (0, 360)
  #x_min, x_max = (200, 360)

  for i, filename in enumerate(args):
    print filename
    f = open(filename, 'rb')
    x, y = zip(*[line.split() for line in f.readlines() if not line.startswith("#")])
    x = flex.double(flex.std_string(x))
    y = flex.double(flex.std_string(y))

    if work_params.smoothing.method is not None:
      savitzky_golay_half_window = work_params.smoothing.savitzky_golay.half_window
      savitzky_golay_degree = work_params.smoothing.savitzky_golay.degree
      fourier_cutoff = work_params.smoothing.fourier_filter_cutoff

      method = work_params.smoothing.method
      if method == "fourier_filter":
        assert work_params.smoothing.fourier_filter_cutoff is not None

      if method == "savitzky_golay":
        x, y = smoothing.savitzky_golay_filter(
          x, y, savitzky_golay_half_window, savitzky_golay_degree)

      elif method == "fourier_filter":
        x, y = smooth_spectrum.fourier_filter(x, y, cutoff_frequency=fourier_cutoff)


    x += x_offsets[i]
    y = y.select((x <= x_max) & (x > 0))
    x = x.select((x <= x_max) & (x > 0))
    bg_sel = (x > bg_range_min) & (x < bg_range_max)
    xy_pairs.append((x,y))
    min_background = min(min_background, flex.mean(y.select(bg_sel))/flex.max(y))
    y -= min_background
    print "Peak maximum at: %i" %int(x[flex.max_index(y)])
  for i, filename in enumerate(args):
    if legend is None:
      label = filename
    else:
      print legend
      assert len(legend) == len(args)
      label = legend[i]
    x, y = xy_pairs[i]
    if i == -1:
      x, y = interpolate(x, y)
      x, y = savitzky_golay_filter(x, y)
    #if i == 0:
      #y -= 10
    bg_sel = (x > bg_range_min) & (x < bg_range_max)
    y -= (flex.mean(y.select(bg_sel)) - min_background*flex.max(y))
    #y -= flex.min(y)
    y_min = flex.min(y.select(bg_sel))
    if i == -2:
      y += 0.2 * flex.max(y)
    print "minimum at: %i" %int(x[flex.min_index(y)]), flex.min(y)
    #print "fwhm: %.2f" %full_width_half_max(x, y)
    y /= flex.max(y)
    if len(colours) > i:
      pyplot.plot(x, y, label=label, linewidth=linewidth, color=colours[i])
    else:
      pyplot.plot(x, y, label=label, linewidth=linewidth)
  pyplot.ylabel("Intensity", fontsize=fontsize)
  pyplot.xlabel("Pixel column", fontsize=fontsize)
  if i > 0:
    # For some reason the line below causes a floating point error if we only
    # have one plot (i.e. i==0)
    legend = pyplot.legend(loc=2)
    for t in legend.get_texts():
      t.set_fontsize(fontsize)
  axes = pyplot.axes()
  for tick in axes.xaxis.get_ticklabels():
    tick.set_fontsize(20)
  for tick in axes.yaxis.get_ticklabels():
    tick.set_fontsize(20)
  pyplot.ylim(0,1)
  pyplot.xlim(x_min, x_max)
  ax = pyplot.axes()
  #ax.xaxis.set_minor_locator(pyplot.MultipleLocator(5))
  #ax.yaxis.set_major_locator(pyplot.MultipleLocator(0.1))
  #ax.yaxis.set_minor_locator(pyplot.MultipleLocator(0.05))
  pyplot.show()
def estimate_global_threshold(image, mask=None):

  from scitbx.array_family import flex
  from scitbx import matrix

  n_above_threshold = flex.size_t()
  threshold = flex.double()
  for i in range(1, 20):
    g = 1.5**i
    g = int(g)
    n_above_threshold.append((image > g).count(True))
    threshold.append(g)

  # Find the elbow point of the curve, in the same manner as that used by
  # distl spotfinder for resolution method 1 (Zhang et al 2006).
  # See also dials/algorithms/spot_finding/per_image_analysis.py

  x = threshold.as_double()
  y = n_above_threshold.as_double()
  slopes = (y[-1] - y[:-1])/(x[-1] - x[:-1])
  p_m = flex.min_index(slopes)

  x1 = matrix.col((x[p_m], y[p_m]))
  x2 = matrix.col((x[-1], y[-1]))

  gaps = flex.double()
  v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize()

  for i in range(p_m, len(x)):
    x0 = matrix.col((x[i], y[i]))
    r = x1 - x0
    g = abs(v.dot(r))
    gaps.append(g)

  mv = flex.mean_and_variance(gaps)
  s = mv.unweighted_sample_standard_deviation()

  p_k = flex.max_index(gaps)
  g_k = gaps[p_k]
  p_g = p_k

  #x_g = x[p_g + p_m]
  #y_g = y[p_g + p_m]

  #x_g = x[p_g + p_m -1]
  #y_g = y[p_g + p_m -1]

  # more conservative, choose point 2 left of the elbow point
  x_g = x[p_g + p_m -2]
  y_g = y[p_g + p_m -2]

  #from matplotlib import pyplot
  #pyplot.scatter(threshold, n_above_threshold)
  ##for i in range(len(threshold)-1):
    ##pyplot.plot([threshold[i], threshold[-1]],
                ##[n_above_threshold[i], n_above_threshold[-1]])
  ##for i in range(1, len(threshold)):
    ##pyplot.plot([threshold[0], threshold[i]],
                ##[n_above_threshold[0], n_above_threshold[i]])
  #pyplot.plot(
    #[threshold[p_m], threshold[-1]], [n_above_threshold[p_m], n_above_threshold[-1]])
  #pyplot.plot(
    #[x_g, threshold[-1]], [y_g, n_above_threshold[-1]])
  #pyplot.show()

  return x_g
Exemple #31
0
    def seed_clustering(self):
        eps = 1e-6
        X_orig = self.coords.as_numpy_array()

        import numpy as np
        from scipy.cluster import hierarchy
        import scipy.spatial.distance as ssd
        from sklearn.neighbors import NearestNeighbors
        from sklearn import metrics

        # initialise cluster labels: -1 signifies doesn't belong to a cluster
        self.cluster_labels = flex.int(self.coords.all()[0], -1)

        cluster_id = 0
        while self.cluster_labels.count(-1) > 0:
            dataset_ids = (flex.int_range(
                len(self.datasets) * len(self.target.get_sym_ops())) %
                           len(self.datasets)).as_numpy_array()
            coord_ids = flex.int_range(dataset_ids.size).as_numpy_array()

            # select only those points that don't already belong to a cluster
            sel = np.where(self.cluster_labels == -1)
            X = X_orig[sel]
            dataset_ids = dataset_ids[sel]
            coord_ids = coord_ids[sel]

            # choose a high density point as seed for cluster
            nbrs = NearestNeighbors(n_neighbors=min(11, len(X)),
                                    algorithm='brute',
                                    metric='cosine').fit(X)
            distances, indices = nbrs.kneighbors(X)
            average_distance = flex.double(
                [dist[1:].mean() for dist in distances])
            i = flex.min_index(average_distance)

            d_id = dataset_ids[i]
            cluster = np.array([coord_ids[i]])
            cluster_dataset_ids = np.array([d_id])
            xis = np.array([X[i]])

            for j in range(len(self.datasets) - 1):
                # select only those rows that don't correspond to a dataset already
                # present in current cluster
                sel = np.where(dataset_ids != d_id)
                X = X[sel]
                dataset_ids = dataset_ids[sel]
                coord_ids = coord_ids[sel]

                assert len(X) > 0

                # Find nearest neighbour in cosine-space to the current cluster centroid
                nbrs = NearestNeighbors(n_neighbors=min(1, len(X)),
                                        algorithm='brute',
                                        metric='cosine').fit(X)
                distances, indices = nbrs.kneighbors([xis.mean(axis=0)])
                k = indices[0][0]
                d_id = dataset_ids[k]
                cluster = np.append(cluster, coord_ids[k])
                cluster_dataset_ids = np.append(cluster_dataset_ids, d_id)
                xis = np.append(xis, [X[k]], axis=0)

            # label this cluster
            self.cluster_labels.set_selected(flex.size_t(cluster.tolist()),
                                             cluster_id)
            cluster_id += 1

        if flex.max(self.cluster_labels) == 0:
            # assume single cluster
            return self.cluster_labels

        cluster_centroids = []
        X = self.coords.as_numpy_array()
        for i in set(self.cluster_labels):
            sel = self.cluster_labels == i
            cluster_centroids.append(X[(
                self.cluster_labels == i).iselection().as_numpy_array()].mean(
                    axis=0))

        # hierarchical clustering of cluster centroids, using cosine metric
        dist_mat = ssd.pdist(cluster_centroids, metric='cosine')
        linkage_matrix = hierarchy.linkage(dist_mat, method='average')

        # compare valid equal-sized clustering using silhouette scores
        # https://en.wikipedia.org/wiki/Silhouette_(clustering)
        # http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
        distances = linkage_matrix[::, 2]
        distances = np.insert(distances, 0, 0)
        silhouette_scores = flex.double()
        thresholds = flex.double()
        n_clusters = flex.size_t()
        for threshold in distances[1:]:
            cluster_labels = self.cluster_labels.deep_copy()
            labels = hierarchy.fcluster(linkage_matrix,
                                        threshold - eps,
                                        criterion='distance').tolist()
            counts = [labels.count(l) for l in set(labels)]
            if len(set(counts)) > 1:
                # only equal-sized clusters are valid
                continue

            n = len(set(labels))
            if n == 1: continue
            for i in range(len(labels)):
                cluster_labels.set_selected(self.cluster_labels == i,
                                            int(labels[i] - 1))
            silhouette_avg = metrics.silhouette_score(
                X, cluster_labels.as_numpy_array(), metric='cosine')
            # Compute the silhouette scores for each sample
            sample_silhouette_values = metrics.silhouette_samples(
                X, cluster_labels.as_numpy_array(), metric='cosine')
            silhouette_avg = sample_silhouette_values.mean()
            silhouette_scores.append(silhouette_avg)
            thresholds.append(threshold)
            n_clusters.append(n)

            count_negative = (sample_silhouette_values < 0).sum()
            logger.info('Clustering:')
            logger.info('  Number of clusters: %i' % n)
            logger.info('  Threshold score: %.3f (%.1f deg)' %
                        (threshold, math.degrees(math.acos(1 - threshold))))
            logger.info('  Silhouette score: %.3f' % silhouette_avg)
            logger.info('  -ve silhouette scores: %.1f%%' %
                        (100 * count_negative / sample_silhouette_values.size))

            if self.params.save_plot:
                plot_silhouette(sample_silhouette_values,
                                cluster_labels.as_numpy_array(),
                                file_name='%ssilhouette_%i.png' %
                                (self.params.plot_prefix, n))

        if self.params.cluster.seed.n_clusters is Auto:
            idx = flex.max_index(silhouette_scores)
        else:
            idx = flex.first_index(n_clusters,
                                   self.params.cluster.seed.n_clusters)
            if idx is None:
                raise Sorry('No valid clustering with %i clusters' %
                            self.params.cluster.seed.n_clusters)

        if (self.params.cluster.seed.n_clusters is Auto
                and silhouette_scores[idx] <
                self.params.cluster.seed.min_silhouette_score):
            # assume single cluster
            self.cluster_labels = flex.int(self.cluster_labels.size(), 0)
        else:
            threshold = thresholds[idx] - eps
            labels = hierarchy.fcluster(linkage_matrix,
                                        threshold,
                                        criterion='distance')
            cluster_labels = flex.double(self.cluster_labels.size(), -1)
            for i in range(len(labels)):
                cluster_labels.set_selected(self.cluster_labels == i,
                                            labels[i] - 1)
            self.cluster_labels = cluster_labels

        if self.params.save_plot:
            plot_matrix(1 - ssd.squareform(dist_mat),
                        linkage_matrix,
                        '%sseed_clustering_cos_angle_matrix.png' %
                        self.params.plot_prefix,
                        color_threshold=threshold)
            plot_dendrogram(linkage_matrix,
                            '%sseed_clustering_cos_angle_dendrogram.png' %
                            self.params.plot_prefix,
                            color_threshold=threshold)

        return self.cluster_labels
Exemple #32
0
    def __init__(self, datasets, params):
        self.datasets = datasets
        self.params = params

        self.input_space_group = None
        for dataset in datasets:
            if self.input_space_group is None:
                self.input_space_group = dataset.space_group()
            else:
                assert dataset.space_group() == self.input_space_group

        if self.params.dimensions is Auto:
            dimensions = None
        else:
            dimensions = self.params.dimensions
        lattice_group = None
        if self.params.lattice_group is not None:
            lattice_group = self.params.lattice_group.group()
        self.target = target.Target(
            self.datasets,
            min_pairs=self.params.min_pairs,
            lattice_group=lattice_group,
            dimensions=dimensions,
            verbose=self.params.verbose,
            weights=self.params.weights,
            nproc=self.params.nproc,
        )
        if self.params.dimensions is Auto:
            dimensions = []
            functional = []
            explained_variance = []
            explained_variance_ratio = []
            for dim in range(1, self.target.dim + 1):
                self.target.set_dimensions(dim)
                self.optimise()
                logger.info('Functional: %g' % self.minimizer.f)
                self.principal_component_analysis()
                dimensions.append(dim)
                functional.append(self.minimizer.f)
                explained_variance.append(self.explained_variance)
                explained_variance_ratio.append(self.explained_variance_ratio)

            # Find the elbow point of the curve, in the same manner as that used by
            # distl spotfinder for resolution method 1 (Zhang et al 2006).
            # See also dials/algorithms/spot_finding/per_image_analysis.py

            from scitbx import matrix
            x = flex.double(dimensions)
            y = flex.double(functional)
            slopes = (y[-1] - y[:-1]) / (x[-1] - x[:-1])
            p_m = flex.min_index(slopes)

            x1 = matrix.col((x[p_m], y[p_m]))
            x2 = matrix.col((x[-1], y[-1]))

            gaps = flex.double()
            v = matrix.col(((x2[1] - x1[1]), -(x2[0] - x1[0]))).normalize()

            for i in range(p_m, len(x)):
                x0 = matrix.col((x[i], y[i]))
                r = x1 - x0
                g = abs(v.dot(r))
                gaps.append(g)

            p_k = flex.max_index(gaps)
            g_k = gaps[p_k]
            p_g = p_k

            x_g = x[p_g + p_m]
            y_g = y[p_g + p_m]

            logger.info('Best number of dimensions: %i' % x_g)
            self.target.set_dimensions(int(x_g))

            if params.save_plot:
                from matplotlib import pyplot as plt
                fig = plt.figure(figsize=(10, 8))
                plt.clf()
                plt.plot(dimensions, functional)
                plt.plot([x_g, x_g], plt.ylim())
                plt.xlabel('Dimensions')
                plt.ylabel('Functional')
                plt.savefig('%sfunctional_vs_dimension.png' %
                            params.plot_prefix)

                plt.clf()
                for dim, expl_var in zip(dimensions, explained_variance):
                    plt.plot(range(1, dim + 1), expl_var, label='%s' % dim)
                plt.plot([x_g, x_g], plt.ylim())
                plt.xlabel('Dimension')
                plt.ylabel('Explained variance')
                plt.savefig('%sexplained_variance_vs_dimension.png' %
                            params.plot_prefix)

                plt.clf()
                for dim, expl_var_ratio in zip(dimensions,
                                               explained_variance_ratio):
                    plt.plot(range(1, dim + 1),
                             expl_var_ratio,
                             label='%s' % dim)
                plt.plot([x_g, x_g], plt.ylim())
                plt.xlabel('Dimension')
                plt.ylabel('Explained variance ratio')
                plt.savefig('%sexplained_variance_ratio_vs_dimension.png' %
                            params.plot_prefix)
                plt.close(fig)

        self.optimise()
        self.principal_component_analysis()

        self.cosine_analysis()
        self.cluster_analysis()
        if self.params.save_plot:
            self.plot()
  def fit_one_histogram(self, pixel, n_gaussians=2):
    histogram = self.histograms[pixel]
    fitted_gaussians = []

    slot_centers = histogram.slot_centers()
    slots = histogram.slots().as_double()

    zero_peak_gaussian = None
    for i in range(n_gaussians):
      if i == 0:
        lower_threshold = -1000
        upper_threshold = 0.4 * self.estimated_gain
        mean = 0
        fit = self.single_peak_fit(histogram, lower_threshold, upper_threshold, mean,
                                   zero_peak_gaussian=zero_peak_gaussian)
        hist_max = flex.max(histogram.slots())
        if abs(fit.functions[0].params[0] - hist_max)/hist_max > 0.1:
          upper_threshold = 0.3 * self.estimated_gain
          fit = self.single_peak_fit(histogram, lower_threshold, upper_threshold, mean,
                                     zero_peak_gaussian=zero_peak_gaussian)
      else:
        y_obs = histogram.slots().as_double()
        x = histogram.slot_centers()
        y_calc = flex.double(y_obs.size(), 0)
        for g in fitted_gaussians:
          y_calc += g(x)
        residual = y_obs - y_calc
        # triangular smoothing of residual to find peak position
        residual = sliding_average(residual)
        residual = sliding_average(residual)
        for n in (4, 5, 6, 7, 8):
        #for n in (5, 6, 7, 8):
          # we assume that the peaks are separated by at least n sigma
          n_sigma = abs(n * fitted_gaussians[0].params[2])
          slot_i = histogram.get_i_slot(fitted_gaussians[i-1].params[1]+n_sigma)
          max_slot_i = flex.max_index(residual[slot_i:]) + slot_i
          mean = slot_centers[max_slot_i]
          lower_threshold = mean - 0.3 * (mean - fitted_gaussians[0].params[1])
          upper_threshold = mean + 0.4 * (mean - fitted_gaussians[0].params[1])
          #print lower_threshold, mean, upper_threshold
          #zero_peak_gaussian = None
          fit = self.single_peak_fit(histogram, lower_threshold, upper_threshold, mean,
                                     zero_peak_gaussian=zero_peak_gaussian)
          if (fit.functions[0].params[1] > fitted_gaussians[-1].params[1]
              and fit.functions[0].sigma > 0.5 * fitted_gaussians[-1].sigma
              and (fit.functions[0].params[1] - fitted_gaussians[-1].params[1]) > n_sigma):
            break
      fitted_gaussians += fit.functions
      if i == 0: zero_peak_gaussian = fit.functions[0]


    if len(fitted_gaussians) > 1:
      try:
        check_pixel_histogram_fit(histogram, fitted_gaussians)
      except PixelFitError, e:
        print "PixelFitError:", str(e)
      gain = fitted_gaussians[1].params[1] - fitted_gaussians[0].params[1]
      print "gain: %s" %gain
      zero_peak = fitted_gaussians[0].params[1]
      photon_threshold = 2/3
      n_single_photons = flex.sum(
        histogram.slots()[histogram.get_i_slot(photon_threshold * gain + zero_peak):])
      n_double_photons = flex.sum(
        histogram.slots()[histogram.get_i_slot((1+photon_threshold) * gain + zero_peak):])
      n_single_photons -= n_double_photons
      print "n_single_photons: %i" %n_single_photons
      print "n_double_photons: %i" %n_double_photons
Exemple #34
0
    def event(self, evt, env):
        """The event() function is called for every L1Accept transition.

    For now, log error and set bogus value to allow stuff to continue
    -- must check for the bogosity later

    XXX The dead time of the detector complicates checking how often
    things are updated!  Move this to the ring buffer?

    @param evt Event data object, a configure object
    @param env Environment object
    """

        from pyana.event import Event
        from acqiris_ext import acqiris_integrate, apd_hitfind

        super(mod_ledge, self).event(evt, env)
        if evt.status() != Event.Normal:
            pass  # XXX return -- Never skip because arrays will end up
            # different length, so ignore this?

        # Get the time of the event, in fractional seconds since the
        # epoch.  This is needed for all subsequent history-keeping, and
        # is hence determined first.  XXX Is history-keeping even
        # justified?
        time = cspad_tbx.evt_time(evt)
        if time is None:
            time = float("nan")
        else:
            time = time[0] + time[1] / 1e3
        self._timestamp.append(time)

        # The repetition rate is currently just used for sanity checking.
        repetition_rate = cspad_tbx.evt_repetition_rate(evt)
        if repetition_rate is None:
            repetition_rate = float("nan")
        self._repetition_rate.append(repetition_rate)

        # Get the I0.  No need to warn about it here, it will be done once
        # the image is written out.
        I0 = cspad_tbx.evt_pulse_energy(evt)
        if I0 is None:
            I0 = float("nan")
        self._I0.append(I0)

        # Get the FEE energy.  Average the two readings before and after
        # attenuation separately.  XXX What are the units?  It look like
        # it could be mJ?
        fee_before = 0.5 * sum(evt.getFeeGasDet()[0:2])
        if fee_before is None:
            fee_before = float("nan")
        self._fee_before.append(fee_before)

        fee_after = 0.5 * sum(evt.getFeeGasDet()[2:4])
        if fee_after is None:
            fee_after = float("nan")
        self._fee_after.append(fee_after)

        # XXX Just a check: this is what xtcexplorer does:
        fee_energy = evt.get(xtc.TypeId.Type.Id_FEEGasDetEnergy)
        if fee_energy is not None:
            assert (
                evt.getFeeGasDet()[0] == fee_energy.f_11_ENRC
                and evt.getFeeGasDet()[1] == fee_energy.f_12_ENRC
                and evt.getFeeGasDet()[2] == fee_energy.f_21_ENRC
                and evt.getFeeGasDet()[3] == fee_energy.f_22_ENRC
            )

        """
    # For Bill: expect 84240 data points for r0054
    #
    # grep "^BILL_POINT" | cut -d' ' -f2,3,4,5,6 > t.dat
    # gnuplot> m=0.1 ; k=-0.01e-8; f(x) = k * x + m
    # gnuplot> fit f(x) "t.dat" using ($3):($5) via k,m
    if not hasattr(self, '_gmd_seqno'):
      self._gmd_seqno = 0
    gmd = evt.get(key=xtc.TypeId.Type.Id_GMD)
    if gmd is None:
      return
    acq_apd = evt.getAcqValue('SxrEndstation-0|Acqiris-1', 0, env)
    if acq_apd is not None and acq_apd.waveform() is not None:
      w = acq_apd.waveform()
      baseline = numpy.mean(w[0:(w.shape[0] / 5)])
      peak = numpy.min(w[(w.shape[0] / 5):w.shape[0]])
      self._gmd_seqno += 1
      print "BILL_POINT %d %s %s %s %s" % (self._gmd_seqno,
                                           repr(gmd.fBgValuePerSample),
                                           repr(gmd.fCorrectedSumPerPulse),
                                           repr(gmd.fRelativeEnergyPerPulse),
                                           repr(peak - baseline))
    return
    """

        """
    # XXX Record injector motion--note that they cannot be added--see
    # Ray's email.
    injector_micos_xyz = cspad_tbx.env_pv3_get(
      env,
      ['SXR:EXP:MZM:%02d:ENCPOSITIONGET' % i for i in [1, 2, 3]])
    if injector_micos_xyz is None:
      self.logger.error("No micos injector motor positions")
      injector_micos_xyz = (float('nan'), float('nan'), float('nan'))
    self._injector_micos_xyz.append(injector_micos_xyz)

    injector_rough_xyz = cspad_tbx.env_pv3_get(
      env,
      ['SXR:EXP:MMS:%02d.RBV' % i for i in [1, 2, 3]])
    if injector_rough_xyz is None:
      self.logger.error("No rough injector motor positions")
      injector_rough_xyz = (float('nan'), float('nan'), float('nan'))
    self._injector_rough_xyz.append(injector_rough_xyz)

    # Injector power supplies XXX There is a third PSU, no?
    #
    # The -5kV supply
    # SXR:EXP:SHV:VHS6:CH0:VoltageMeasure
    # SXR:EXP:SHV:VHS6:CH0:CurrentMeasure
    #
    # The plus 5kV supply
    # SXR:EXP:SHV:VHS2:CH0:VoltageMeasure
    # SXR:EXP:SHV:VHS2:CH0:CurrentMeasure
    injector_plus_current = cspad_tbx.env_pv1_get(
      env, 'SXR:EXP:SHV:VHS6:CH0:CurrentMeasure')
    if injector_plus_current is None:
      self.logger.error("No plus-motor current")
      injector_plus_current = -1
    self._injector_plus_current.append(injector_plus_current)

    injector_plus_voltage = cspad_tbx.env_pv1_get(
      env, 'SXR:EXP:SHV:VHS6:CH0:VoltageMeasure')
    if injector_plus_voltage is None:
      self.logger.error("No plus-motor voltage")
      injector_plus_voltage = -1
    self._injector_plus_voltage.append(injector_plus_voltage)

    injector_minus_current = cspad_tbx.env_pv1_get(
      env, 'SXR:EXP:SHV:VHS2:CH0:CurrentMeasure')
    if injector_minus_current is None:
      self.logger.error("No minus-motor current")
      injector_minus_current = -1
    self._injector_minus_current.append(injector_minus_current)

    injector_minus_voltage = cspad_tbx.env_pv1_get(
      env, 'SXR:EXP:SHV:VHS2:CH0:VoltageMeasure')
    if injector_minus_voltage is None:
      self.logger.error("No minus-motor voltage")
      injector_minus_voltage = -1
    self._injector_minus_voltage.append(injector_minus_voltage)
    """

        """
    # The spectrometer motor positions are just used for sanity
    # checking.
    spectrometer_xyz = cspad_tbx.env_spectrometer_xyz_sxr(env)
    if spectrometer_xyz is None:
      self.logger.error("No spectrometer motor positions")
      spectrometer_xyz = (float('nan'), float('nan'), float('nan'))
    self._spectrometer_xyz.append(spectrometer_xyz)
    """

        # Get the pulse energy after monochromator, and fall back on the
        # pre-monochromator energy if the former is absent.  Record in
        # list for mean and stddev.  XXX Verify that the wavelength after
        # the monochromator is updated at around 1 Hz.
        #
        # For the publication an offset and scale were calibrated.
        wavelength = cspad_tbx.env_wavelength_sxr(evt, env)
        if wavelength is None:
            wavelength = cspad_tbx.evt_wavelength(evt)
        if wavelength is None:
            energy = float("nan")
        else:
            energy = 12398.4187 / wavelength
        self._energy.append(energy)
        self._history_energy.push(time, energy)  # XXX Not necessary?!

        """
    # Laser shutters XXX need to sort out laser numbering XXX Laser
    # power stuff? XXX Position of polarizer/analyser
    shutters = cspad_tbx.env_laser_shutters(env)
    #print "Got shutters", shutters
    """

        # Read out the diode traces from the via the Acqiris.  XXX In any
        # case, the APD and the more sensitive Opto Diode in the monitor
        # tank (i.e. the transmission diode) should be anti-correlated, so
        # check it!  The entire trace always covers 10 us.  XXX Could this
        # be figured out from xtc.TypeId.Type.Id_AcqConfig?
        #
        # XXX This appears to be suboptimal: look at the
        # skewness-transform for the APD to sort this out.
        acq_apd = evt.getAcqValue("SxrEndstation-0|Acqiris-1", 0, env)
        acq_apd_integral = float("nan")
        if acq_apd is not None:
            waveform = acq_apd.waveform()
            if waveform is not None:
                # With a 40k-point trace, one should integrate from 18200 to
                # 18400.
                waveform = waveform.flatten()
                nmemb = len(waveform) // 200
                if nmemb > 0:
                    acq_apd_integral = acqiris_integrate(flex.double(waveform), 91 * nmemb, 100 * nmemb, nmemb)
        self._acq_apd_integral.append(acq_apd_integral)

        if evt.expNum() == 208:
            # Opto diode address for L632.
            acq_opto_diode = evt.getAcqValue("SxrEndstation-0|Acqiris-1", 1, env)
        elif evt.expNum() == 363:
            # Opto diode address for LB68.
            acq_opto_diode = evt.getAcqValue("SxrEndstation-0|Acqiris-2", 2, env)
        acq_opto_diode_integral = float("nan")
        if acq_opto_diode is not None:
            waveform = acq_opto_diode.waveform()
            if waveform is not None:
                # With a 40k-point trace, one should integrate from 16000 to
                # 24000.  With a 20k-point trace, a suitable integration
                # region is bounded by 8000 and 12000.  There is no need for
                # thresholding, because the integral of the Opto Diode will
                # not be used for hit finding.  XXX What are the "misses" we
                # record on the Opto Diode?  XXX The direct beam is completely
                # gone after it hits the sample, because soft X-rays.
                waveform = waveform.flatten()
                nmemb = len(waveform) // 5
                if nmemb > 0:
                    acq_opto_diode_integral = acqiris_integrate(flex.double(waveform), 2 * nmemb, 4 * nmemb, nmemb)
        self._acq_opto_diode_integral.append(acq_opto_diode_integral)

        # Sanity check: verify that the timestamps for the two Acqiris
        # traces are similar enough.
        if acq_apd is not None and acq_opto_diode is not None:
            assert (
                len(acq_apd.timestamps()) == len(acq_opto_diode.timestamps())
                and numpy.any(numpy.abs(acq_apd.timestamps() - acq_opto_diode.timestamps())) < 1e-6
            )

        # self.logger.info("DIODE INTEGRALS: %f %f %f" % (I0, acq_apd_integral, acq_opto_diode_integral))

        """
    import matplotlib.pyplot as plt

    hit_array_apd = apd_hitfind(
      flex.double(acq_apd.waveform()),
      len(acq_apd.waveform()) // 5)
    hit_array_opto_diode = apd_hitfind(
      flex.double(acq_opto_diode.waveform()),
      len(acq_opto_diode.waveform()) // 5)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    #ax.plot(
    #  range(len(acq_apd.timestamps())), acq_apd.waveform())
    ax.plot(
      range(len(acq_opto_diode.timestamps())), acq_opto_diode.waveform()[0, :])
    plt.show()

    fig = plt.figure()
    ax = fig.add_subplot(111)
    #ax.plot(
    #  acq_apd.timestamps()[0:len(hit_array_apd)], hit_array)
    ax.plot(
      acq_opto_diode.timestamps()[0:len(hit_array_opto_diode)], hit_array)
    plt.show()
    """

        # Determine whether the beam hit the sample, and register the
        # outcome.  If not using any diodes for hit-finding, every shot is
        # assumed to be a hit.  XXX Unfortunately, this crucial piece is
        # very unreliable.  The threshold for the APD needs to be
        # verified--inspect all the histograms.  XXX hitfind_flags is
        # probable better as a module parameter.
        #    hitfind_flags = 0x3
        hitfind_flags = 0
        hit = False
        if not hitfind_flags:
            hit = True
        elif hitfind_flags & 0x1 and acq_apd_integral > 0.2:
            hit = True
        self._hit.append(hit)

        # Always proceed all the way through (even if some shots have
        # invalid values of e.g. I0) because images are precious.  XXX
        # Must reset counters before returning!  XXX What about skipping
        # all of the above if display is True?
        if self.cspad_img is not None:
            self._nframes += 1

            """
      # The spectrometer should not move!
      t = (self._spectrometer_xyz -
           self._spectrometer_xyz.mean()).rms_length()
      print "Spectrometer displacement", t

      # Fine/rough motor position deviations from the mean.  See Ray's
      # email.
      t = (self._injector_micos_xyz -
           self._injector_micos_xyz.mean()).rms_length()
      print "Injector micos displacement", t

      t = (self._injector_rough_xyz -
           self._injector_rough_xyz.mean()).rms_length()
      print "Injector rough displacement", t

      # Injector motor position means and deviations
      if self._injector_plus_current.size() > 1:
        t = flex.mean_and_variance(self._injector_plus_current)
        print "Injector plus current mean %10e stddev %10e" % \
            (t.mean(), t.unweighted_sample_standard_deviation())
      if self._injector_plus_voltage.size() > 1:
        t = flex.mean_and_variance(self._injector_plus_voltage)
        print "Injector plus voltage mean %10e stddev %10e" % \
            (t.mean(), t.unweighted_sample_standard_deviation())

      if self._injector_minus_current.size() > 1:
        t = flex.mean_and_variance(self._injector_minus_current)
        print "Injector minus current mean %10e stddev %10e" % \
            (t.mean(), t.unweighted_sample_standard_deviation())
      if self._injector_minus_voltage.size() > 1:
        t = flex.mean_and_variance(self._injector_minus_voltage)
        print "Injector minus voltage mean %10e stddev %10e" % \
            (t.mean(), t.unweighted_sample_standard_deviation())

      """

            # Energy statistics are collected from all shots, regardless of
            # whether they are hits or not.  Since this statistic mentions
            # the frame number, it should be reported first.  XXX The energy
            # should have a really small standard deviation.  Check
            # self._energy.size() and self._history_energy.frequency() XXX
            # verify that it works for one data point.
            (energy_mean, energy_stddev, energy_nmemb, n) = self._filtered_stats(
                lambda x: not math.isnan(x) and x > 0, self._energy
            )
            if n > 0:
                self.logger.warning("%d shots have undefined energy" % n)

            (I0_mean, I0_stddev, I0_nmemb, n) = self._filtered_stats(lambda x: not math.isnan(x), self._I0)
            if n > 0:
                self.logger.warning("%d shots have undefined I0" % n)

            self.logger.info(
                "Frame %d: E=%.3f+/-%.3f (N=%d) I0=%.0f+/-%.0f (N=%d)"
                % (self._nframes, energy_mean, energy_stddev, energy_nmemb, I0_mean, I0_stddev, I0_nmemb)
            )

            # Sanity check: unless changed while integrating the frame, the
            # repetition rate should have a standard deviation of zero.
            dt = self._timestamp[-1] - self._timestamp[0]
            rr_mean = rr_observed = rr_stddev = 0
            if dt > 0:
                rr_observed = (len(self._timestamp) - 1) / dt
                rr = filter(lambda x: not math.isnan(x) and x > 0, self._repetition_rate)
                if len(rr) > 1:
                    rr_stats = flex.mean_and_variance(flex.double(rr))
                    rr_mean = rr_stats.mean()
                    rr_stddev = rr_stats.unweighted_sample_standard_deviation()
            self.logger.info(
                "Repetition rate: %.3f Hz (observed), %.3f+/-%.3f Hz (expected)" % (rr_observed, rr_mean, rr_stddev)
            )

            # Compare observed and configured exposure time.
            config = cspad_tbx.getConfig(self.address, env)
            exposure_time = 0
            if config is not None and dt > 0 and len(self._timestamp) > 0:
                exposure_time = dt * (len(self._timestamp) + 1) / len(self._timestamp)
            self.logger.info(
                "Exposure time: %.3f s (observed), %.3f s (configured)" % (exposure_time, config.exposureTime())
            )

            # Compute the leading dead time, the time between starting the
            # readout of the previous frame and the arrival of the shot
            # immediately following it.  This is an interesting statistic,
            # no matter what.  XXX Maybe look at its distribution?
            dead_time = 0
            if rr_observed > 0 and hasattr(self, "_previous_readout_time"):
                dead_time = self._timestamp[0] - self._previous_readout_time - 1 / rr_observed
                if math.isnan(dead_time):
                    dead_time = 0
            self.logger.info("Dead time: %.3f s" % dead_time)
            self._previous_readout_time = self._timestamp[-1]

            assert time == self._timestamp[-1]  # XXX ZAP once one run survives it!

            # Flag blank images (i.e. images that had no hits), because
            # these may interesting for background subtraction.
            hits = self._hit.count(True)
            self.logger.info("Hit rate: %d/%d (%.2f%%)" % (hits, self._hit.size(), 100 * hits / self._hit.size()))
            if hits == 0:
                self.logger.info("Frame %d is blank" % self._nframes)

            # Get the normalisation factor by summing up I0 for all hits.
            # Invalid and non-positive values of I0 are treated as zeroes.
            # XXX Make this kind of summing a function of its own.
            I0 = sum(filter(lambda x: not math.isnan(x) and x > 0, self._I0.select(self._hit)))
            I0_all = sum(filter(lambda x: not math.isnan(x) and x > 0, self._I0))

            fee_before_all = sum(filter(lambda x: not math.isnan(x) and x > 0, self._fee_before))
            fee_after_all = sum(filter(lambda x: not math.isnan(x) and x > 0, self._fee_after))

            # Register the template to the image and locate the regions of
            # interest based on the registration parameters.  XXX Should
            # also give contrast: fit 2D-Gaussian to peak and report its
            # standard deviations and fit?
            if self._template is not None:
                gamma = lewis(self._template, self.cspad_img)
                p = flex.max_index(gamma)
                peak = (
                    p // gamma.focus()[1] - self._template.focus()[0] + 1,
                    p % gamma.focus()[1] - self._template.focus()[1] + 1,
                )

                # """
                ### REFERENCE CHECK ###
                from os.path import dirname, isdir, join
                from scipy import io

                mat_dirname = dirname(cspad_tbx.pathsubst(self._mat_path, evt, env, frame_number=self._nframes))
                if not isdir(mat_dirname):
                    makedirs(mat_dirname)

                io.savemat(
                    file_name=join(mat_dirname, "cross-check-%05d.mat" % self._nframes),
                    mdict=dict(
                        image=self.cspad_img.as_numpy_array(),
                        template=self._template.as_numpy_array(),
                        gamma=gamma.as_numpy_array(),
                        peak=numpy.array(peak),
                    ),
                    appendmat=False,
                    do_compression=True,
                    oned_as="column",
                )

                return
                ### REFERENCE CHECK ###
                # """
            else:
                # Alternative: position everything with respect to the frame
                # origin.
                peak = (0, 0)

            # XXX Come up with a better way to handle the offsets!  They
            # really do depend on the template, and should therefore be
            # packaged with it.
            self.logger.info("Template registration anchor point (%d, %d)" % (peak[0], peak[1]))

            roi = []
            if evt.expNum() == 208:
                # Regions of interest for L632 (experiment number 208).  XXX
                # Could perhaps migrate the template matching here instead?

                # The left, middle, and right manganese signals.  XXX Extend the
                # rightmost ROI three pixels in upward direction (see runs 145
                # and onwards, also note narrower slit)?
                roi.append((peak[0] + 59, peak[1] - 24, 12, 5))
                roi.append((peak[0] + 61, peak[1] + 28, 12, 4))
                roi.append((peak[0] + 61, peak[1] + 79, 12, 5))

                # Two background regions between the manganese spots, with the
                # same total area as the signal.
                roi.append((peak[0] + 62, peak[1] + 1, 8, 8))
                roi.append((peak[0] + 63, peak[1] + 51, 8, 8))

                # The left and right direct reflections from the Si substrate
                # (i.e. the areas between the zone plates).  These were the
                # features used for template registration.
                roi.append((peak[0], peak[1], 40, 10))
                roi.append((peak[0], peak[1] + 50, 40, 9))

                # Spot between the direct reflections.  XXX What is this?
                roi.append((peak[0] + 1, peak[1] + 23, 22, 13))

                # The horizontal slit, where the direct reflection occurs.  This
                # is fixed.  XXX Verify this!
                roi.append((22, 0, 41, 128))

                # Background stripe, below the manganese spots.  This is fixed
                # to the bottom of the detector.
                roi.append((104, 0, 20, 128))

            elif evt.expNum() == 363:
                # Regions of interest for LB68 (experiment number 363).
                # 0-pixel are active, 255-pixel are inactive
                from scipy.misc import imread

                # Dec 5, 2013 (09:00 - 21:00): initial estimates from r0010
                """
        roi.append((peak[0] +  14, peak[1] + 138 + 23, 25, 50 - 25))
        roi.append((peak[0] +  45, peak[1] + 138 + 23, 25, 50 - 25))
        roi.append((peak[0] +  78, peak[1] + 137 + 23, 25, 50 - 25))
        roi.append((peak[0] + 111, peak[1] + 137 + 23, 25, 50 - 25))
        roi.append((peak[0] + 144, peak[1] + 137 + 23, 25, 50 - 25))
        roi.append((peak[0] + 177, peak[1] + 136 + 23, 25, 50 - 25))
        roi.append((peak[0] + 210, peak[1] + 136 + 23, 25, 50 - 25))
        roi.append((peak[0] + 243, peak[1] + 136 + 23, 25, 50 - 25))
        roi.append((peak[0] + 278, peak[1] + 135 + 23, 25, 50 - 25))
        roi.append((peak[0] + 312, peak[1] + 135 + 23, 25, 50 - 25))
        roi.append((peak[0] + 344, peak[1] + 135 + 23, 25, 50 - 25))
        roi.append((peak[0] + 376, peak[1] + 135 + 23, 25, 50 - 25))
        roi.append((peak[0] + 408, peak[1] + 135 + 23, 25, 50 - 25))
        roi.append((peak[0] + 442, peak[1] + 135 + 23, 25, 50 - 25))
        roi.append((peak[0] + 475, peak[1] + 135 + 23, 25, 50 - 25))
        """

                # Dec 6, 2013 (09:00 - 21:00): rough estimates
                """
        roi.append((peak[0] + 0, peak[1] +  25, 512,  25)) # bkg
        roi.append((peak[0] + 0, peak[1] + 135, 512,  25)) # oxygen
        roi.append((peak[0] + 0, peak[1] + 160, 512,  25)) # signal
        roi.append((peak[0] + 0, peak[1] + 300, 512, 130)) # zeroth order
        """

                # Dec 7, 2013 (09:00 - 21:00): overlap between oxygen and
                # signal.  Will loose some signal.
                """
        roi.append((peak[0] + 0, peak[1] +  25, 512,  25)) # bkg
        roi.append((peak[0] + 0, peak[1] + 135, 512,  50)) # oxygen
        roi.append((peak[0] + 0, peak[1] + 185, 512,  40)) # signal
        roi.append((peak[0] + 0, peak[1] + 270, 512, 170)) # zeroth order
        """

                """
        # Dec 7 2013 (09:00 - 21:00): binary masks stored in PNG
        # images.

        roi.append((peak[0] + 0, peak[1] +  25, 512,  25)) # bkg
        roi.append((peak[0] + 0, peak[1] + 135, 512,  25)) # oxygen

        #roi_image = flex.float(
        #  imread('/reg/neh/home1/hattne/myrelease/LB68-r0039-max-mask.png',
        #         flatten=True))
        #roi_image = flex.float(
        #  imread('/reg/neh/home1/hattne/myrelease/LB68-r0039-std-mask.png',
        #         flatten=True))
        roi_image = flex.float(
          imread('/reg/neh/home1/hattne/myrelease/LB68-r0052-avg-mask.png',
                 flatten=True))
        roi_image = (255 - roi_image)

        #roi.append((0, 0, self.cspad_img.focus()[0], self.cspad_img.focus()[1]))
        roi.append(roi_image)

        roi.append((peak[0] + 0, peak[1] + 270, 512, 170)) # zeroth order
        """

                # Dec 9, 2013 (09:00 - 21:00)
                # """
                roi.append((peak[0] + 0, peak[1] + 25, 512, 25))  # bkg
                roi.append((peak[0] + 0, peak[1] + 135, 512, 25))  # oxygen
                # roi.append((peak[0] + 0, peak[1] + 160, 512,  25)) # signal
                roi_image = flex.float(imread("/reg/neh/home1/hattne/myrelease/LB68-r0067-max-mask.png", flatten=True))
                roi.append(roi_image)

                roi.append((peak[0] + 0, peak[1] + 240, 512, 180))  # zeroth order
                # """

            else:
                self.logger.error(
                    "No regions of interest for %s (experiment number %d)" % (env.experiment(), evt.expNum())
                )

            # Clip the regions of interest to the actual image.  If the ROI
            # does not overlap with the image at all, set its width and
            # height to zero.  XXX Do the integration here as well?
            for i in range(len(roi)):
                if not isinstance(roi[i], tuple):
                    continue

                r = roi[i]
                if (
                    r[0] + r[2] < 0
                    or r[0] >= self.cspad_img.focus()[0]
                    or r[1] + r[3] < 0
                    or r[1] >= self.cspad_img.focus()[1]
                ):
                    roi[i] = (r[0], r[1], 0, 0)
                    continue

                r = roi[i]
                if r[0] < 0:
                    roi[i] = (0, r[1], r[2] + r[0], r[3])

                r = roi[i]
                if r[1] < 0:
                    roi[i] = (r[0], 0, r[2], r[3] + r[1])

                r = roi[i]
                if r[0] + r[2] > self.cspad_img.focus()[0]:
                    roi[i] = (r[0], r[1], self.cspad_img.focus()[0] - r[0], r[3])

                r = roi[i]
                if r[1] + r[3] > self.cspad_img.focus()[1]:
                    roi[i] = (r[0], r[1], r[2], self.cspad_img.focus()[1] - r[1])

            # Sum up intensities in all regions of interest, and keep track
            # of the actual number of pixels summed.  The common_mode module
            # takes care of dark-subtraction.  XXX Would like to estimate
            # sigma for spot, like in spotfinder/LABELIT.
            I = flex.double(len(roi))
            I_nmemb = flex.int(len(roi))
            for i in range(len(roi)):
                if isinstance(roi[i], flex.float):
                    sel = roi[i].as_1d() < 128
                    I[i] = flex.sum(self.cspad_img.as_1d().select(sel))
                    I_nmemb[i] = sel.count(True)
                    continue

                if roi[i][2] <= 0 or roi[i][3] <= 0:
                    I[i] = 0
                    I_nmemb[i] = 0
                else:
                    I[i] = flex.sum(
                        self.cspad_img.matrix_copy_block(
                            i_row=roi[i][0], i_column=roi[i][1], n_rows=roi[i][2], n_columns=roi[i][3]
                        )
                    )
                    I_nmemb[i] = roi[i][2] * roi[i][3]
                    """
          # Sanity check: white out the region of interest.
          self.cspad_img.matrix_paste_block_in_place(
            block=flex.double(flex.grid(roi[i][2], roi[i][3])),
            i_row=roi[i][0],
            i_column=roi[i][1])
          """

            acq_apd_sum = sum(filter(lambda x: not math.isnan(x) and x > 0, self._acq_apd_integral.select(self._hit)))
            acq_opto_diode_sum = sum(
                filter(lambda x: not math.isnan(x) and x > 0, self._acq_opto_diode_integral.select(self._hit))
            )

            acq_apd_sum_all = sum(filter(lambda x: not math.isnan(x) and x > 0, self._acq_apd_integral))
            acq_opto_diode_sum_all = sum(filter(lambda x: not math.isnan(x) and x > 0, self._acq_opto_diode_integral))

            # Append the data point to the stream: shots, hits, energy, and
            # I.  XXX OrderedDict requires Python 2.7, could fall back on
            # regular Dict at the price of non-deterministic column order.
            from collections import OrderedDict

            csv_dict = OrderedDict(
                [
                    ("n_frames", self._hit.size()),
                    ("n_hits", hits),
                    ("I0", I0),
                    ("I0_all", I0_all),
                    ("fee_before_all", fee_before_all),
                    ("fee_after_all", fee_after_all),
                    ("energy_mean", energy_mean),
                    ("acq_apd_sum", acq_apd_sum),
                    ("acq_apd_sum_all", acq_apd_sum_all),
                    ("acq_opto_diode_sum", acq_opto_diode_sum),
                    ("acq_opto_diode_sum_all", acq_opto_diode_sum_all),
                ]
            )
            for (i, item) in enumerate(zip(roi, I, I_nmemb)):
                key = "roi_" + ("bkg", "oxygen", "manganese", "zeroth_order")[i]
                csv_dict["%s_nmemb" % key] = item[2]

                if isinstance(item[0], tuple):
                    csv_dict["%s_ss_start" % key] = item[0][0]
                    csv_dict["%s_fs_start" % key] = item[0][1]
                    csv_dict["%s_ss_size" % key] = item[0][2]
                    csv_dict["%s_fs_size" % key] = item[0][3]
                else:
                    csv_dict["%s_ss_start" % key] = 0
                    csv_dict["%s_fs_start" % key] = 0
                    csv_dict["%s_ss_size" % key] = item[0].focus()[0]
                    csv_dict["%s_fs_size" % key] = item[0].focus()[1]

                csv_dict["%s_I" % key] = item[1]

            # XXX assert that keys match up with what's in the file already?
            # Or exploit the error-reporting mechanism already implemented?
            # Write the header.  XXX How to control the order of the
            # columns?
            if not hasattr(self, "_csv"):
                from csv import DictWriter

                self._csv = DictWriter(self._stream_table, csv_dict.keys())
                self._csv.writerow({key: key for key in csv_dict.keys()})
            self._csv.writerow(csv_dict)

            # Output the non-normalised image and all other relevant data to
            # a binary MATLAB file.  XXX What if scipy is not available?
            from os import makedirs, path
            from scipy import io

            mat_path = cspad_tbx.pathsubst(self._mat_path, evt, env, frame_number=self._nframes)
            if not path.isdir(path.dirname(mat_path)):
                makedirs(path.dirname(mat_path))

            io.savemat(
                file_name=mat_path,
                mdict=dict(
                    DATA=self.cspad_img.as_numpy_array(),
                    DIODES=numpy.array((acq_apd_sum, acq_apd_sum_all, acq_opto_diode_sum, acq_opto_diode_sum_all)),
                    ENERGY=energy_mean,
                    HITS=numpy.array((hits, self._hit.size())),
                    I0=numpy.array((I0, I0_all)),
                    INTENSITIES=numpy.array(I),
                    ROIS=numpy.array([r for r in roi if isinstance(r, tuple)]),
                ),
                appendmat=False,
                do_compression=True,
                oned_as="column",
            )

            # Optionally update the image in the viewer.  See mod_view.
            if self._display:
                from time import localtime, strftime

                # Copy over regions of interest to shared multiprocessing
                # array.  XXX Flip to honour wxPython convention.
                for i in range(len(roi)):
                    if not isinstance(roi[i], tuple):
                        continue
                    self._roi[4 * i + 0] = roi[i][1]
                    self._roi[4 * i + 1] = roi[i][0]
                    self._roi[4 * i + 2] = roi[i][3]
                    self._roi[4 * i + 3] = roi[i][2]

                time_str = strftime("%H:%M:%S", localtime(evt.getTime().seconds()))
                title = "r%04d@%s: frame %d on %s" % (evt.run(), time_str, self._nframes, self.address)

                # XXX No distance in the Andor experiment.  So don't bother
                # with the fictional beam center, distance, and saturation
                # value?  See also mod_average.endjob()
                img_obj = (
                    dict(
                        BEAM_CENTER=(0, 0),
                        DATA=self.cspad_img,
                        DETECTOR_ADDRESS=self.address,
                        DISTANCE=10,  # XXX Evil kludge to keep dxtbx happy!
                        PIXEL_SIZE=13.5e-3,  # XXX Hard-coded, again!
                        SATURATED_VALUE=10000,
                        TIME_TUPLE=cspad_tbx.evt_time(evt),
                        WAVELENGTH=12398.4187 / energy,
                    ),
                    title,
                )

                while not self._queue.empty():
                    if not self._proc.is_alive():
                        evt.setStatus(Event.Stop)
                        return
                while True:
                    try:
                        self._queue.put(img_obj, timeout=1)
                        break
                    except Exception:  # Queue.Full:
                        pass

            self._reset_counters()
            return