def random_walk_2D(np, ns, plot_step):
    xpositions = zeros(np)
    ypositions = zeros(np)
    # extent of the axis in the plot:
    ymin = -4
    ymax = 8 * sqrt(ns)
    xmax = 3 * sqrt(ns)
    xmin = -xmax

    for step in range(ns):
        for i in range(np):
            r = random.randint(0, 10)
            if 0 <= r <= 5:
                ypositions[i] += 1
            elif r == 6:
                ypositions[i] -= 1
            elif 7 <= r <= 8:
                xpositions[i] += 1
            elif 9 <= r <= 10:
                xpositions[i] -= 1

        # plot just every plot_step steps:
        if (step + 1) % plot_step == 0:
            plot(
                xpositions,
                ypositions,
                "ko",
                axis=[xmin, xmax, ymin, ymax],
                title="%d researchers after %d months, with ownership of strategy" % (np, step + 1),
                hardcopy="tmp_%03d.eps" % (step + 1),
            )
    return xpositions, ypositions
def random_walk_2D(np, ns, plot_step):
    xpositions = zeros(np)
    ypositions = zeros(np)
    # extent of the axis in the plot:
    ymin = -4
    ymax = 8 * sqrt(ns)
    xmax = 3 * sqrt(ns)
    xmin = -xmax

    for step in range(ns):
        for i in range(np):
            r = random.randint(0, 10)
            if 0 <= r <= 5:
                ypositions[i] += 1
            elif r == 6:
                ypositions[i] -= 1
            elif 7 <= r <= 8:
                xpositions[i] += 1
            elif 9 <= r <= 10:
                xpositions[i] -= 1

        # plot just every plot_step steps:
        if (step + 1) % plot_step == 0:
            plot(xpositions, ypositions, 'ko',
                 axis=[xmin, xmax, ymin, ymax],
                 title='%d researchers after %d months, with ownership of strategy' % \
                       (np, step+1),
                 hardcopy='tmp_%03d.eps' % (step+1))
    return xpositions, ypositions
Exemple #3
0
def d(n):
    from scitools.std import zeros, sqrt
    arr = zeros(n)
    cum_sum = 6 / sqrt(3)
    for i in range(n):
        k = i + 1
        cum_sum += 6 / sqrt(3) * (-1)**k / (3**k * (2 * k + 1))
        arr[i] = cum_sum
    return arr
Exemple #4
0
def random_walk_2D(np, ns, plot_step):
    xpositions = zeros(np)
    ypositions = zeros(np)
    # extent of the axis in the plot:
    xymax = 3 * sqrt(ns)
    xymin = -xymax

    NORTH = 1
    SOUTH = 2
    WEST = 3
    EAST = 4  # constants

    for step in range(ns):
        for i in range(np):
            direction = random_number.randint(1, 4)
            if direction == NORTH:
                ypositions[i] += 1
            elif direction == SOUTH:
                ypositions[i] -= 1
            elif direction == EAST:
                xpositions[i] += 1
            elif direction == WEST:
                xpositions[i] -= 1

        # plot just every plot_step steps:
        if (step + 1) % plot_step == 0:
            plot(xpositions, ypositions, 'ko',
                 axis=[xymin, xymax, xymin, xymax],
                 title='%d particles after %d steps' % \
                       (np, step+1),
                 hardcopy='tmp_%03d.eps' % (step+1))
    return xpositions, ypositions
def random_walk_2D(np, ns, plot_step):
    xpositions = zeros(np)
    ypositions = zeros(np)
    # extent of the axis in the plot:
    xymax = 3*sqrt(ns); xymin = -xymax

    NORTH = 1;  SOUTH = 2;  WEST = 3;  EAST = 4  # constants

    for step in range(ns):
        for i in range(np):
            direction = random_number.randint(1, 4)
            if direction == NORTH:
                ypositions[i] += 1
            elif direction == SOUTH:
                ypositions[i] -= 1
            elif direction == EAST:
                xpositions[i] += 1
            elif direction == WEST:
                xpositions[i] -= 1

        # plot just every plot_step steps:
        if (step+1) % plot_step == 0:
            plot(xpositions, ypositions, 'ko',
                 axis=[xymin, xymax, xymin, xymax],
                 title='%d particles after %d steps' % \
                       (np, step+1),
                 hardcopy='tmp_%03d.eps' % (step+1))
    return xpositions, ypositions
Exemple #6
0
def b(n):
    from scitools.std import sqrt, zeros
    arr = zeros(n)
    cum_sum = 0
    for i in range(n):
        k = i + 1
        cum_sum = sqrt(cum_sum**2 + 6 * k**(-2))
        arr[i] = cum_sum
    return arr
Exemple #7
0
def test_terminalVelocity():
    """
    Test for the terminal velocity with no source term.
    """
    import nose.tools as nt
    T = 30.; dt = 0.1; g = 9.81; m = 50.;
    Cd = 1.2; rho = 1.0; A = 0.5;
    a = Cd*rho*A/(2.*m)
    v, t = solver(T, dt, -0.1, Cd, rho, A, m)
    nt.assert_almost_equal(v[-1], -sqrt(g/a), delta=1e-4)
Exemple #8
0
def Temperature_and_Pressure():
    meanT = 0
    meanP = 0
    mean_squareT = 0
    mean_squareP = 0
    # begin to sample after 200 timesteps:
    N = len(T) - 200
    for j in range(N):
        i = j + 200
        meanT += T[i]
        meanP += P[i]
        mean_squareT += T[i] * T[i]
        mean_squareP += P[i] * P[i]

    meanT = meanT / N
    meanP = meanP / N

    sT = sqrt(mean_squareT / N - meanT * meanT)
    sP = sqrt(mean_squareP / N - meanP * meanP)

    return meanT, meanP, sT, sP
def pathlength(x, y):
    '''                                                                        	Computes the path length of the points (x0,y0), (x1,y1), ..., (xn,yn)      	x is a list of real numbers     
	y is a list of real numbers  
	len(x) and len(y) must be equal                                        
	'''

    from scitools.std import sqrt
    sum = 0
    n = len(x)
    for i in range(1, n):
        sum += sqrt((x[i] - x[i - 1])**2 + (y[i] - y[i - 1])**2)
    return sum
Exemple #10
0
def Temperature_and_Pressure():
    meanT = 0
    meanP = 0
    mean_squareT = 0
    mean_squareP = 0
    # begin to sample after 200 timesteps:
    N = len(T) -200
    for j in range(N):
        i = j+200
        meanT += T[i]
        meanP += P[i]
        mean_squareT += T[i]*T[i]
        mean_squareP += P[i]*P[i]
        
    meanT = meanT/N
    meanP = meanP/N

    sT = sqrt(mean_squareT/N - meanT*meanT)
    sP = sqrt(mean_squareP/N - meanP*meanP)

    return meanT,meanP,sT,sP
def c(lambda_):
	'''
	Computes the wave speed of water surface waves 
	depending on the length lambda of the waves
	lambda_ must be in meters
	'''
	g = 9.81 # m/s**2
	s = 7.9*10**-2 # N/m, air-water surface tension
	rho = 1*10**6 # kg/m**3, density of water
	h = 50 # m, the water depth, which we have fixed
	from scitools.std import pi, tanh, sqrt
	return sqrt(g*lambda_/(2*pi)*(1 + s*4*pi**2/(rho*g*lambda_**2)) \
		* tanh(2*pi*h/lambda_))
def c(lambda_):
    '''
	Computes the wave speed of water surface waves 
	depending on the length lambda of the waves
	lambda_ must be in meters
	'''
    g = 9.81  # m/s**2
    s = 7.9 * 10**-2  # N/m, air-water surface tension
    rho = 1 * 10**6  # kg/m**3, density of water
    h = 50  # m, the water depth, which we have fixed
    from scitools.std import pi, tanh, sqrt
    return sqrt(g*lambda_/(2*pi)*(1 + s*4*pi**2/(rho*g*lambda_**2)) \
     * tanh(2*pi*h/lambda_))
Exemple #13
0
def test_terminalVelocity():
    """
    Test for the terminal velocity with no source term.
    """
    import nose.tools as nt
    T = 30.
    dt = 0.1
    g = 9.81
    m = 50.
    Cd = 1.2
    rho = 1.0
    A = 0.5
    a = Cd * rho * A / (2. * m)
    v, t = solver(T, dt, -0.1, Cd, rho, A, m)
    nt.assert_almost_equal(v[-1], -sqrt(g / a), delta=1e-4)
Exemple #14
0
def test_convergenceRates():
    """
    Test for the convergence rates of the solver.
    The expected result is that the variable r takes the value 2, because
    the Crank-Nicolson scheme and the geometric average have errors of order
    dt**2. The final error should then be O(dt**2) which gives r=2. 
    """
    dt_start = 1.0
    num_dt = 10
    E_values = zeros(num_dt)
    T = 10.
    g = 9.81
    m = 50.
    Cd = 1.2
    rho = 1.0
    A = 0.5
    a = Cd * rho * A / (2. * m)

    dt = zeros(num_dt)
    dt[0] = dt_start
    for i in range(1, len(dt)):
        dt[i] = dt[i - 1] / 2.

    D = -0.39
    B = 0.76
    C = -0.145

    def exact(t):
        return D * t**3 + B * t + C

    def src(t):
        return m * g + m * a * abs(
            exact(t)) * exact(t) + m * (3 * D * t**2 + B)

    # Simulate for different timesteps, and store the error in E_values
    for i in range(num_dt):
        v, t = solver(T, dt[i], exact(0), Cd, rho, A, m, src)
        ve = exact(t)
        diff = v - ve
        E_values[i] = sqrt(dt[i] * sum(diff**2))

    # Calculate r-values corresponding to the error with each different timestep
    r = zeros(len(E_values) - 1)
    for i in range(1, len(r)):
        r[i] = (log(E_values[i - 1] / E_values[i])) / (log(dt[i - 1] / dt[i]))
    import nose.tools as nt
    nt.assert_almost_equal(r[-1], 2, delta=0.1)
def finite_element_Picard(L, Nx, N, dt, C, P_L, P_R):
    # Define mesh
    mesh = Interval(Nx, 0, L)
    #Define function space and functions
    V = FunctionSpace(mesh, 'Lagrange', 1)
    v = TestFunction(V)
    q = TrialFunction(V)
    q_k = Function(V)
    q_1 = Function(V)
    # Define boundary conditions
    bcl = DirichletBC(V, Constant(P_L**2), LeftDiricletBoundary)
    bcr = DirichletBC(V, Constant(P_R**2), RightDiricletBoundary)
    bc = [bcl, bcr]
    # Initial condition
    I_q = Constant(P_R**2)
    q_1 = interpolate(I_q, V)
    q_k.assign(q_1)
    c = Constant(C)
    # Define variational problems
    a = q*v*dx + dt*c*q_k**1.5*inner(nabla_grad(q), nabla_grad(v))*dx
    L = q_1*v*dx
    # Time loop
    q = Function(V)     # new unknown function
    tol = 1.0E-5        # tolerance
    maxiter = 25        # max no of iterations allowed
    t = dt
    for n in range(0, N):
        #print 'time =', t
        eps = 1.0           # error measure ||u-u_k||
        iter = 0            # iteration counter
        b = assemble(L)
        while eps > tol and iter < maxiter:
    	    iter += 1
 	    A = assemble(a)
	    bcl.apply(A, b)
	    bcr.apply(A, b) 
	    solve(A, q.vector(), b,'lu')
	    diff = q.vector().array() - q_k.vector().array()
    	    eps = numpy.linalg.norm(diff, ord=numpy.Inf)
    	    q_k.assign(q)
	#print 'iter=%d: norm=%g' % (iter, eps)
        t += dt
        q_1.assign(q_k)
    # return last P
    return sqrt(q_k.vector().array())
def finite_difference(L, Nx, N, dt, C, P_L, P_R):
    x = linspace(0, L, Nx+1)
    dx = x[1] - x[0]
    C = 0.4*C*dt/(dx**2)
    print C	
    Q   = zeros(Nx+1)
    Q_1 = P_R**2*ones(Nx+1)

    for n in range(0, N):
        # Compute u at inner mesh points
        for i in range(1, Nx):
            Q[i] = Q_1[i] + C*(Q_1[i-1]**2.5 - 2*Q_1[i]**2.5 + Q_1[i+1]**2.5)
	# Insert boundary conditions 
	Q[0]=P_L**2; Q[Nx]=P_R**2
    	# Update u_1 before next step
    	Q_1[:]= Q
    
    return sqrt(Q), x
Exemple #17
0
def test_convergenceRates():
    """
    Test for the convergence rates of the solver.
    The expected result is that the variable r takes the value 2, because
    the Crank-Nicolson scheme and the geometric average have errors of order
    dt**2. The final error should then be O(dt**2) which gives r=2. 
    """
    dt_start = 1.0; num_dt = 10
    E_values = zeros(num_dt)
    T = 10.; g = 9.81; m = 50.; Cd = 1.2; rho = 1.0; A = 0.5;
    a = Cd*rho*A/(2.*m)
    
    dt = zeros(num_dt); dt[0] = dt_start
    for i in range(1,len(dt)):
        dt[i] = dt[i-1]/2.
    
    D = -0.39; B = 0.76; C = -0.145
    def exact(t):
        return D*t**3  + B*t + C
    def src(t):
        return m*g + m*a*abs(exact(t))*exact(t) + m*(3*D*t**2 + B)
    
     # Simulate for different timesteps, and store the error in E_values
    for i in range(num_dt):
        v, t = solver(T, dt[i], exact(0), Cd, rho, A, m, src)
        ve = exact(t)
        diff = v - ve
        E_values[i] = sqrt(dt[i]*sum(diff**2))
    
    # Calculate r-values corresponding to the error with each different timestep
    r=zeros(len(E_values)-1)
    for i in range(1, len(r)):
        r[i] = (log(E_values[i-1]/E_values[i]))/(log(dt[i-1]/dt[i]))
    import nose.tools as nt
    nt.assert_almost_equal(r[-1], 2, delta=0.1)
    

    
Exemple #18
0
        counter += 1


def T(z, t):
    # T0, A, k, and omega are global variables
    return T0 + A1 * exp(-a1 * z) * cos(omega1 * t - a1 * z) + \
        A2 * exp(-a2 * z) * cos(omega2 * t - a2 * z)


k = 1E-6  # thermal diffusivity (in m**2/s)

A1 = 15  # amplitude of the daily temperature variations (in C)
P1 = 24 * 60 * 60.  # oscillation period of 24 h (in seconds)
# angular frequency of daily temperature variations (in rad/s)
omega1 = 2 * pi / P1
a1 = sqrt(omega1 / (2 * k))

A2 = 7  # amplitude of yearly temperature variations (in C)
P2 = 24 * 60 * 60 * 365.  # oscillation period of 1 yr (in seconds)
# angular frequency of yearly temperature variations (in rad/s)
omega2 = 2 * pi / P2
a2 = sqrt(omega2 / (2 * k))

dt = P2 / 30  # time lag: 0.1 yr
tmax = 3 * P2  # 3 year simulation
T0 = 10  # mean surface temperature in Celsius
D = -(1 / a1) * log(0.001)  # max depth
n = 501  # no of points in the z direction

z = linspace(0, D, n)
Exemple #19
0
def test_undampedWaves():
    
    #define constants given in exercise
    A = 1
    mx=7.
    my=2.
    
    #define function that give
    q=lambda x,y: 1
    
    #define some variables
    Lx = 3
    Ly = 1.3
    T = 1
    C = 0.5
    dt= 0.1
    
    #define omega so equation holds
    w=pi*sqrt((mx/Lx)**2 +(my/Ly)**2)
    
    #help varabeles
    kx = pi*mx/Lx
    ky = pi*my/Ly
    
    #Exact solution
    ue = lambda x,y,t: A*cos(x*kx)*cos(y*ky)*cos(t*w)
    
    #initial condition so we get result we want.
    I = lambda x,y: A*cos(x*kx)*cos(y*ky)
    
   
    #factor dt decreeses per step
    step=0.5
    #number of steps I want to do
    val=5
    #array to store errors
    E=zeros(val)
    
    
    
    for i in range(val):
        v='vector'
        #solve eqation
        u,x,y,t,e=solver(I,None,None,q,0,Lx,Ly,dt*step**(i),T,C,1,mode=v,ue=ue)
        
        
        E[i]=e
        
    #find convergence rate between diffrent dt values
    r =zeros(val-1)
    r = log(E[1:]/E[:-1])/log(step)

    
    print "Test convergence for undamped waves:"
    for i in range(val):
        if i==0:
            print "dt: ",dt," Error: ",E[i]
        else:
            print "dt: ",dt*step**(i)," Error: ",E[i], "rate of con.: ", r[i-1]
        
    
    #requiere close to 2 in convergence rate for last r.
    assert abs(r[-1]-2)<0.01 
Exemple #20
0
def f(x, m, s):
    return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)
Exemple #21
0
a = 1  #set parameters for the orbit
b = 1
w = 1
delta_t = (2 * pi) / (w * n)
counter = 0
X = []
Y = []

for k in range(n + 1):
    tk = k * delta_t  #each time through we need to add a new k value
    x = a * cos(w * tk)
    y = b * sin(w * tk)
    X.append(x)
    Y.append(y)
    XP = array(X)
    YP = array(Y)
    XF = array([x])
    YF = array([y])
    velo = w * sqrt(a**2 * sin(w * tk)**2 + b**2 * cos(w * tk)**2)
    plot(XP,
         YP,
         '-r',
         XF,
         YF,
         'bo',
         axis=[-1.2, 1.2, -1.2, 1.2],
         title='Planetary orbit',
         legend=(['Instaneous velocity=%6f' % velo, 'present location']),
         savefig='pix/planet%4d.png' % counter)
    counter += 1
    show()
Exemple #22
0
# from __future__ import unicode_literals
Exemple #23
0
def test_undampedWaves():

    #define constants given in exercise
    A = 1
    mx = 7.
    my = 2.

    #define function that give
    q = lambda x, y: 1

    #define some variables
    Lx = 3
    Ly = 1.3
    T = 1
    C = 0.5
    dt = 0.1

    #define omega so equation holds
    w = pi * sqrt((mx / Lx)**2 + (my / Ly)**2)

    #help varabeles
    kx = pi * mx / Lx
    ky = pi * my / Ly

    #Exact solution
    ue = lambda x, y, t: A * cos(x * kx) * cos(y * ky) * cos(t * w)

    #initial condition so we get result we want.
    I = lambda x, y: A * cos(x * kx) * cos(y * ky)

    #factor dt decreeses per step
    step = 0.5
    #number of steps I want to do
    val = 5
    #array to store errors
    E = zeros(val)

    for i in range(val):
        v = 'vector'
        #solve eqation
        u, x, y, t, e = solver(I,
                               None,
                               None,
                               q,
                               0,
                               Lx,
                               Ly,
                               dt * step**(i),
                               T,
                               C,
                               1,
                               mode=v,
                               ue=ue)

        E[i] = e

    #find convergence rate between diffrent dt values
    r = zeros(val - 1)
    r = log(E[1:] / E[:-1]) / log(step)

    print "Test convergence for undamped waves:"
    for i in range(val):
        if i == 0:
            print "dt: ", dt, " Error: ", E[i]
        else:
            print "dt: ", dt * step**(
                i), " Error: ", E[i], "rate of con.: ", r[i - 1]

    #requiere close to 2 in convergence rate for last r.
    assert abs(r[-1] - 2) < 0.01
def pathlength(x, y):
    L = 0
    for i in xrange(1, len(x)):
        dL_squared = (x[i] - x[i - 1]) ** 2 + (y[i] - y[i - 1]) ** 2
        L += sqrt(dL_squared)
    return L
Exemple #25
0
             show=False)
        t += dt
        counter += 1


def T(z, t):
    # T0, A, k, and omega are global variables
    return T0 + A1 * exp(-a1 * z) * cos(omega1 * t - a1 * z) + \
        A2 * exp(-a2 * z) * cos(omega2 * t - a2 * z)

k = 1E-6            # thermal diffusivity (in m**2/s)

A1 = 15             # amplitude of the daily temperature variations (in C)
P1 = 24 * 60 * 60.      # oscillation period of 24 h (in seconds)
omega1 = 2 * pi / P1   # angular freq of daily temp variations (in rad/s)
a1 = sqrt(omega1 / (2 * k))

A2 = 7                    # amplitude of yearly temperature variations (in C)
P2 = 24 * 60 * 60 * 365.  # oscillation period of 1 yr (in seconds)
omega2 = 2 * pi / P2      # angular freq of yearly temp variations (in rad/s)
a2 = sqrt(omega2 / (2 * k))

dt = P2 / 20            # time lag: 0.1 yr
tmax = 3 * P2               # 3 year simulation
T0 = 10                 # mean surface temperature in Celsius
D = -(1 / a1) * log(0.001)  # max depth
n = 501                 # no of points in the z direction

# set T0, A, k, omega, D, n, tmax, dt
z = linspace(0, D, n)
animate(tmax, dt, z, T, T0 - A2 - A1, T0 + A2 + A1, 0, 'z', 'T')
def advance_scalar(u, u_1, u_2, q, f, x, y, t, n, A, B, dt2, dtdx2,dtdy2,
                   V=None, step1=False):
    t1 = time.clock()
    Ix = range(0, u.shape[0]);  Iy = range(0, u.shape[1])
    if step1: # Special formula for step 1
        I = u_1; dt = sqrt(dt2)
        for i in Ix[1:-1]:
            for j in Iy[1:-1]:
                u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V(x[i],y[j]) + dt2*f(x[i], y[j], 0) \
                       + dtdx2*( (q[i,j] + q[i+1,j]) * (I[i+1,j] - I[i,j])          \
                       -         (q[i,j] + q[i-1,j]) * (I[i,j]   - I[i-1,j]))       \
                       + dtdy2*( (q[i,j] + q[i,j+1]) * (I[i,j+1] - I[i,j])          \
                       -         (q[i,j] + q[i,j-1]) * (I[i,j]   - I[i,j-1])))
    else: # Compute ALL interior points
        for i in Ix[1:-1]:
            for j in Iy[1:-1]:
                u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f(x[i], y[j], t[n])    \
                       + dtdx2*( (q[i,j] + q[i+1,j]) * (u_1[i+1,j] - u_1[i,j])    \
                       -         (q[i,j] + q[i-1,j]) * (u_1[i,j]   - u_1[i-1,j])) \
                       + dtdy2*( (q[i,j] + q[i,j+1]) * (u_1[i,j+1] - u_1[i,j])    \
                       -         (q[i,j] + q[i,j-1]) * (u_1[i,j]   - u_1[i,j-1])))

    # Neumann boundary condition du/dx = 0
    if step1:
        i = Ix[0] # 1) Boundary where x = 0
        for j in Iy[1:-1]:
            u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V(x[i],y[j]) + dt2*f(x[i], y[j], 0) \
                   + dtdx2*2*(q[i,j] + q[i+1,j]) * (I[i+1,j] - I[i,j])          \
                   + dtdy2*( (q[i,j] + q[i,j+1]) * (I[i,j+1] - I[i,j])          \
                   -         (q[i,j] + q[i,j-1]) * (I[i,j]   - I[i,j-1])))

        i = Ix[-1] # 1) Boundary where x = Nx
        for j in Iy[1:-1]:
            u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V(x[i],y[j]) + dt2*f(x[i], y[j], 0) \
                   + dtdx2*2*(q[i,j] + q[i-1,j]) * (I[i-1,j] - I[i,j])          \
                   + dtdy2*( (q[i,j] + q[i,j+1]) * (I[i,j+1] - I[i,j])          \
                   -         (q[i,j] + q[i,j-1]) * (I[i,j]   - I[i,j-1])))

        j = Iy[0] # 1) Boundary where y = 0
        for i in Ix[1:-1]:
            u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V(x[i],y[j]) + dt2*f(x[i], y[j], 0) \
                   + dtdx2*( (q[i,j] + q[i+1,j]) * (I[i+1,j] - I[i,j])          \
                   -         (q[i,j] + q[i-1,j]) * (I[i,j]   - I[i-1,j]))       \
                   + dtdy2*2*(q[i,j] + q[i,j+1]) * (I[i,j+1] - I[i,j]))

        j = Iy[-1] # 1) Boundary where y = Ny
        for i in Ix[1:-1]:
            u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V(x[i],y[j]) + dt2*f(x[i], y[j], 0) \
                   + dtdx2*( (q[i,j] + q[i+1,j]) * (I[i+1,j] - I[i,j])          \
                   -         (q[i,j] + q[i-1,j]) * (I[i,j]   - I[i-1,j]))       \
                   + dtdy2*2*(q[i,j] + q[i,j-1]) * (I[i,j-1] - I[i,j]))

        # Special formula for the four corner points
        i = Ix[0]; j = Iy[0]
        u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V(x[i],y[j]) + dt2*f(x[i], y[j], 0) \
               + dtdx2*2*(q[i,j] + q[i+1,j]) * (I[i+1,j] - I[i,j])          \
               + dtdy2*2*(q[i,j] + q[i,j+1]) * (I[i,j+1] - I[i,j]))

        i = Ix[0]; j = Iy[-1]
        u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V(x[i],y[j]) + dt2*f(x[i], y[j], 0) \
               + dtdx2*2*(q[i,j] + q[i+1,j]) * (I[i+1,j] - I[i,j])          \
               + dtdy2*2*(q[i,j] + q[i,j-1]) * (I[i,j-1] - I[i,j]))

        i = Ix[-1]; j = Iy[0]
        u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V(x[i],y[j]) + dt2*f(x[i], y[j], 0) \
               + dtdx2*2*(q[i,j] + q[i-1,j]) * (I[i-1,j] - I[i,j])          \
               + dtdy2*2*(q[i,j] + q[i,j+1]) * (I[i,j+1] - I[i,j]))

        i = Ix[-1]; j = Iy[-1]
        u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V(x[i],y[j]) + dt2*f(x[i], y[j], 0) \
               + dtdx2*2*(q[i,j] + q[i-1,j]) * (I[i-1,j] - I[i,j])          \
               + dtdy2*2*(q[i,j] + q[i,j-1]) * (I[i,j-1] - I[i,j]))

    else: # Any step NOT first
        i = Ix[0] # 1) Boundary where x = 0
        for j in Iy[1:-1]:
            u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f(x[i], y[j], t[n])  \
                   + dtdx2*2*(q[i,j] + q[i+1,j]) * (u_1[i+1,j] - u_1[i,j])  \
                   + dtdy2*( (q[i,j] + q[i,j+1]) * (u_1[i,j+1] - u_1[i,j])  \
                   -         (q[i,j] + q[i,j-1]) * (u_1[i,j]   - u_1[i,j-1])))

        i = Ix[-1] # 1) Boundary where x = Nx
        for j in Iy[1:-1]:
            u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f(x[i], y[j], t[n])  \
                   + dtdx2*2*(q[i,j] + q[i-1,j]) * (u_1[i-1,j] - u_1[i,j])  \
                   + dtdy2*( (q[i,j] + q[i,j+1]) * (u_1[i,j+1] - u_1[i,j])  \
                   -         (q[i,j] + q[i,j-1]) * (u_1[i,j]   - u_1[i,j-1])))

        j = Iy[0] # 1) Boundary where y = 0
        for i in Ix[1:-1]:
            u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f(x[i], y[j], t[n])    \
                   + dtdx2*( (q[i,j] + q[i+1,j]) * (u_1[i+1,j] - u_1[i,j])    \
                   -         (q[i,j] + q[i-1,j]) * (u_1[i,j]   - u_1[i-1,j])) \
                   + dtdy2*2*(q[i,j] + q[i,j+1]) * (u_1[i,j+1] - u_1[i,j]) )

        j = Iy[-1] # 1) Boundary where y = Ny
        for i in Ix[1:-1]:
            u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f(x[i], y[j], t[n])    \
                   + dtdx2*( (q[i,j] + q[i+1,j]) * (u_1[i+1,j] - u_1[i,j])    \
                   -         (q[i,j] + q[i-1,j]) * (u_1[i,j]   - u_1[i-1,j])) \
                   + dtdy2*2*(q[i,j] + q[i,j-1]) * (u_1[i,j-1] - u_1[i,j]) )

        # Special formula for the four corner points
        i = Ix[0]; j = Iy[0]
        u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f(x[i], y[j], t[n])  \
               + dtdx2*2*(q[i,j] + q[i+1,j]) * (u_1[i+1,j] - u_1[i,j])  \
               + dtdy2*2*(q[i,j] + q[i,j+1]) * (u_1[i,j+1] - u_1[i,j]))

        i = Ix[0]; j = Iy[-1]
        u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f(x[i], y[j], t[n])  \
               + dtdx2*2*(q[i,j] + q[i+1,j]) * (u_1[i+1,j] - u_1[i,j])  \
               + dtdy2*2*(q[i,j] + q[i,j-1]) * (u_1[i,j-1] - u_1[i,j]))

        i = Ix[-1]; j = Iy[0]
        u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f(x[i], y[j], t[n])  \
               + dtdx2*2*(q[i,j] + q[i-1,j]) * (u_1[i-1,j] - u_1[i,j])  \
               + dtdy2*2*(q[i,j] + q[i,j+1]) * (u_1[i,j+1] - u_1[i,j]))

        i = Ix[-1]; j = Iy[-1]
        u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f(x[i], y[j], t[n])  \
               + dtdx2*2*(q[i,j] + q[i-1,j]) * (u_1[i-1,j] - u_1[i,j])  \
               + dtdy2*2*(q[i,j] + q[i,j-1]) * (u_1[i,j-1] - u_1[i,j]))
    CPU_time = time.clock() - t1
    return u, CPU_time
Exemple #27
0
def f(x,m,s):
    return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)
Exemple #28
0
"""
Exercise 5.3: Fill arrays; vectorized (plot)
Author: Weiyun Lu
"""

from scitools.std import sqrt, pi, exp, linspace, plot

h = lambda x : (1/(sqrt(2*pi))) * exp(-0.5*x**2)
xlist = linspace(-4,4,41)
hlist = h(xlist)
pairs = zip(xlist,hlist)

plot(xlist, hlist, axis=[xlist[0], xlist[-1], 0, 0.5], xlabel='x', \
    ylabel='h(x)', title='Standard Gaussian')
N = 1600
h = 0.05
k = 0.2
P_L = 1
P_R = 0
dt = T/float(N);
DX = L/float(Nx)
C = k*h**2
c = C*dt/DX**2

# Solve by different methods
start = time.clock()
P_fd, x = finite_difference(L, Nx, N, dt, C, P_L, P_R)
print 'FD forward Euler:', time.clock() - start

P_ex = sqrt(1-x)

start = time.clock()
P_Pi = finite_element_Picard(L, Nx, N, dt, C, P_L, P_R)
print 'FE backward Euler Picard:', time.clock() - start

start = time.clock()
P_Ne = finite_element_Newton(L, Nx, N, dt, C, P_L, P_R)
print 'FE bacward Euler Newton:', time.clock() - start


figure(1)
pylab.plot(x, P_ex, x, P_fd, x, P_Pi, x, P_Ne)#, x, P_fe)
pylab.legend(['Exact', 'FD forward Euler', 'FE backward Euler Picard', 'FE backward Euler Newton'])
pylab.xlabel('x')
pylab.ylabel('Pressure')
def solver(I, V_, f_, c, Lx, Ly, Nx, Ny, dt, T, b,
           user_action=None, version='scalar', skip_every_n_frame=10, show_cpu_time=False,display_warnings=True, plotting=False):

    order = 'C' # Store arrays in a column-major order (in memory)

    x = linspace(0, Lx, Nx+1)  # mesh points in x dir
    y = linspace(0, Ly, Ny+1)  # mesh points in y dir
    dx = x[1] - x[0]
    dy = y[1] - y[0]

    xv = x[:,newaxis]          # for vectorized function evaluations
    yv = y[newaxis,:]

    # Assuming c is a function:
    c_ = zeros((Nx+1,Ny+1), order='c')
    for i,xx in enumerate(x):
        for j,yy in enumerate(y):
            c_[i,j] = c(xx,yy)  # Loop through x and y with indices i,j at the same time
    c_max = c_.max()            # Pick out the largest value from c(x,y)
    q = c_**2

    stability_limit = (1/float(c_max))*(1/sqrt(1/dx**2 + 1/dy**2))
    if dt <= 0:                # shortcut for max time step is to use i.e. dt = -1
        safety_factor = -dt    # use negative dt as safety factor
        extra_factor  = 1      # Easy way to make dt even smaller
        dt = safety_factor*stability_limit*extra_factor
    elif dt > stability_limit and display_warnings:
        print '\nWarning: (Unless you are testing the program), be aware that'
        print 'dt: %g is currently exceeding the stability limit: %g\n' %(dt, stability_limit)
    Nt = int(round(T/float(dt)))
    t  = linspace(0, Nt*dt, Nt+1)              # mesh points in time
    dt2 = dt**2

    # Constants for simple calculation
    A = (1 + b*dt/2)**(-1)
    B = (b*dt/2 - 1)
    dtdx2 = dt**2/(2*dx**2)
    dtdy2 = dt**2/(2*dy**2)

    # Make f(x,y,t) and V(x,y) ready for computation with different schemes
    if f_ is None or f_ == 0:
        f = (lambda x, y, t: 0) if version == 'scalar' else \
            lambda x, y, t: zeros((xv.shape[0], yv.shape[1]))
    else:
        if version == 'scalar':
            f = f_
    if V_ is None or V_ == 0:
        V = (lambda x, y: 0) if version == 'scalar' else \
            lambda x, y: zeros((xv.shape[0], yv.shape[1]))
    else:
        if version == 'scalar':
            V = V_

    if version == 'vectorized': # Generate and fill matrices for first timestep
        f = zeros((Nx+1,Ny+1), order=order)
        V = zeros((Nx+1,Ny+1), order=order)
        f[:,:] = f_(xv,yv,0)
        V[:,:] = V_(xv,yv)

    u   = zeros((Nx+1,Ny+1), order=order)   # solution array
    u_1 = zeros((Nx+1,Ny+1), order=order)   # solution at t-dt
    u_2 = zeros((Nx+1,Ny+1), order=order)   # solution at t-2*dt

    Ix = range(0, u.shape[0])               # Index set notation
    Iy = range(0, u.shape[1])
    It = range(0, t.shape[0])

    import time; t0 = time.clock()          # for measuring CPU time

    # Load initial condition into u_1
    if version == 'scalar':
        for i in Ix:
            for j in Iy:
                u_1[i,j] = I(x[i], y[j])
    else: # use vectorized version
        u_1[:,:] = I(xv, yv)

    if user_action is not None:
        if plotting:
            user_action(u_1, x, xv, y, yv, t, 0, skip_every_n_frame)
        else:
            user_action(u_1, x, xv, y, yv, t, 0)

    # Special formula for first time step
    n = 0
    # First step requires a special formula, use either the scalar
    # or vectorized version (the impact of more efficient loops than
    # in advance_vectorized is small as this is only one step)
    if version == 'scalar':
        u,cpu_time = advance_scalar(u, u_1, u_2, q, f, x, y, t, n, A, B,
                            dt2, dtdx2,dtdy2, V, step1=True)
    else:
        u,cpu_time = advance_vectorized(u, u_1, u_2, q, f, t, n, A, B,
                            dt2, dtdx2,dtdy2, V, step1=True)

    if user_action is not None:
        if plotting:
            user_action(u, x, xv, y, yv, t, 1, skip_every_n_frame)
        else:
            user_action(u_1, x, xv, y, yv, t, 1)

    # Update data structures for next step
    u_2, u_1, u = u_1, u, u_2

    # Time loop for all later steps
    for n in It[1:-1]:
        if version == 'scalar':
            # use f(x,y,t) function
            u,cpu_time = advance_scalar(u, u_1, u_2, q, f, x, y, t, n, A, B, dt2, dtdx2,dtdy2)
            if show_cpu_time:
                percent = (float(n)/It[-2])*100.0
                sys.stdout.write("\rLast step took: %.3f sec with [scalar-code]. Computation is %d%% " %(cpu_time,percent))
                sys.stdout.flush()
        else: # Use vectorized code
            f[:,:] = f_(xv, yv, t[n])  # must precompute the matrix f
            u,cpu_time = advance_vectorized(u, u_1, u_2, q, f, t, n, A, B,
                                dt2, dtdx2,dtdy2)
            if show_cpu_time:
                percent = (float(n)/It[-2])*100.0
                sys.stdout.write("\rLast step took: %.5f sec with [vec-code]. Computation is %d%% " %(cpu_time,percent))
                sys.stdout.flush()

        if user_action is not None:
            if plotting:
                if user_action(u, x, xv, y, yv, t, n+1, skip_every_n_frame):
                    break
            else:
                if user_action(u, x, xv, y, yv, t, n+1):
                    break

        # Update data structures for next step
        #u_2[:] = u_1;  u_1[:] = u  # safe, but slower
        u_2, u_1, u = u_1, u, u_2

    # Important to set u = u_1 if u is to be returned!
    t1 = time.clock()
    # dt might be computed in this function so return the value
    return dt, t1 - t0
Exemple #31
0
def pathlength(x, y):
    L = 0
    for i in xrange(1, len(x)):
        dL_squared = (x[i] - x[i - 1])**2 + (y[i] - y[i - 1])**2
        L += sqrt(dL_squared)
    return L
def advance_vectorized(u, u_1, u_2, q, f, t, n, A, B,
                    dt2, dtdx2,dtdy2, V=None, step1=False):
    """ Haakon (me) code  """
    t1 = time.clock()
    Ix = range(0, u.shape[0]);  Iy = range(0, u.shape[1])
    if step1:
        I = u_1; dt = sqrt(dt2)
        u[1:-1,1:-1] = 0.5*(2*I[1:-1,1:-1] - 2*B*dt*V[1:-1,1:-1] + dt2*f[1:-1,1:-1]   \
               + dtdx2*( (q[1:-1,1:-1] + q[2:,1:-1])  * (I[2:,1:-1]   - I[1:-1,1:-1]) \
               -         (q[1:-1,1:-1] + q[:-2,1:-1]) * (I[1:-1,1:-1] - I[:-2,1:-1])) \
               + dtdy2*( (q[1:-1,1:-1] + q[1:-1,2:])  * (I[1:-1,2:]   - I[1:-1,1:-1]) \
               -         (q[1:-1,1:-1] + q[1:-1,:-2]) * (I[1:-1,1:-1] - I[1:-1,:-2])))
    else:
        u[1:-1,1:-1] = A*( 2*u_1[1:-1,1:-1] + B*u_2[1:-1,1:-1] + dt2*f[1:-1,1:-1]         \
               + dtdx2*( (q[1:-1,1:-1] + q[2:,1:-1])  * (u_1[2:,1:-1]   - u_1[1:-1,1:-1]) \
               -         (q[1:-1,1:-1] + q[:-2,1:-1]) * (u_1[1:-1,1:-1] - u_1[:-2,1:-1])) \
               + dtdy2*( (q[1:-1,1:-1] + q[1:-1,2:])  * (u_1[1:-1,2:]   - u_1[1:-1,1:-1]) \
               -         (q[1:-1,1:-1] + q[1:-1,:-2]) * (u_1[1:-1,1:-1] - u_1[1:-1,:-2])))

    ######################################
    # Neumann boundary condition du/dn=0 #
    ######################################
    if step1:
        i = Ix[0] # 1) Boundary where x = 0
        u[i,1:-1] = 0.5*(2*I[i,1:-1] - 2*B*dt*V[i,1:-1] + dt2*f[i,1:-1]        \
               + dtdx2*2*(q[i,1:-1] + q[i+1,1:-1]) * (I[i+1,1:-1] - I[i,1:-1]) \
               + dtdy2*( (q[i,1:-1] + q[i,2:])     * (I[i,2:]     - I[i,1:-1]) \
               -         (q[i,1:-1] + q[i,:-2])    * (I[i,1:-1]   - I[i,:-2])))

        i = Ix[-1] # 1) Boundary where x = Nx
        u[i,1:-1] = 0.5*(2*I[i,1:-1] - 2*B*dt*V[i,1:-1] + dt2*f[i,1:-1]        \
               + dtdx2*2*(q[i,1:-1] + q[i-1,1:-1]) * (I[i-1,1:-1] - I[i,1:-1]) \
               + dtdy2*( (q[i,1:-1] + q[i,2:])     * (I[i,2:]     - I[i,1:-1]) \
               -         (q[i,1:-1] + q[i,:-2])    * (I[i,1:-1]   - I[i,:-2])))

        j = Iy[0] # 1) Boundary where y = 0
        u[1:-1,j] = 0.5*(2*I[1:-1,j] - 2*B*dt*V[1:-1,j] + dt2*f[1:-1,j]          \
               + dtdx2*( (q[1:-1,j] + q[2:,j])      * (I[2:,j]      - I[1:-1,j]) \
               -         (q[1:-1,j] + q[:-2,j])     * (I[1:-1,j]    - I[:-2,j])) \
               + dtdy2*2*(q[1:-1,j] + q[1:-1:,j+1]) * (I[1:-1:,j+1] - I[1:-1,j]))

        j = Iy[-1] # 1) Boundary where y = Ny
        u[1:-1,j] = 0.5*(2*I[1:-1,j] - 2*B*dt*V[1:-1,j] + dt2*f[1:-1,j]          \
               + dtdx2*( (q[1:-1,j] + q[2:,j])      * (I[2:,j]      - I[1:-1,j]) \
               -         (q[1:-1,j] + q[:-2,j])     * (I[1:-1,j]    - I[:-2,j])) \
               + dtdy2*2*(q[1:-1,j] + q[1:-1:,j-1]) * (I[1:-1:,j-1] - I[1:-1,j]))

        # Special formula for the four corner points
        i = Ix[0]; j = Iy[0]
        u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V[i,j] + dt2*f[i,j]        \
               + dtdx2*2*(q[i,j] + q[i+1,j]) * (I[i+1,j] - I[i,j]) \
               + dtdy2*2*(q[i,j] + q[i,j+1]) * (I[i,j+1] - I[i,j]))

        i = Ix[0]; j = Iy[-1]
        u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V[i,j] + dt2*f[i,j]        \
               + dtdx2*2*(q[i,j] + q[i+1,j]) * (I[i+1,j] - I[i,j]) \
               + dtdy2*2*(q[i,j] + q[i,j-1]) * (I[i,j-1] - I[i,j]))

        i = Ix[-1]; j = Iy[0]
        u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V[i,j] + dt2*f[i,j]        \
               + dtdx2*2*(q[i,j] + q[i-1,j]) * (I[i-1,j] - I[i,j]) \
               + dtdy2*2*(q[i,j] + q[i,j+1]) * (I[i,j+1] - I[i,j]))

        i = Ix[-1]; j = Iy[-1]
        u[i,j] = 0.5*(2*I[i,j] - 2*B*dt*V[i,j] + dt2*f[i,j]        \
               + dtdx2*2*(q[i,j] + q[i-1,j]) * (I[i-1,j] - I[i,j]) \
               + dtdy2*2*(q[i,j] + q[i,j-1]) * (I[i,j-1] - I[i,j]))

    else: # Any step NOT first
        i = Ix[0] # 1) Boundary where x = 0
        u[i,1:-1] = A*( 2*u_1[i,1:-1] + B*u_2[i,1:-1] + dt2*f[i,1:-1]                 \
             + dtdx2*2*(q[i,1:-1] + q[i+1,1:-1]) * (u_1[i+1,1:-1] - u_1[i,1:-1])  \
             + dtdy2*( (q[i,1:-1] + q[i,2:])      * (u_1[i,2:]      - u_1[i,1:-1])  \
             -         (q[i,1:-1] + q[i,:-2])     * (u_1[i,1:-1]    - u_1[i,:-2])))

        i = Ix[-1] # 1) Boundary where x = Nx
        u[i,1:-1] = A*( 2*u_1[i,1:-1] + B*u_2[i,1:-1] + dt2*f[i,1:-1]                 \
             + dtdx2*2*(q[i,1:-1] + q[i-1,1:-1]) * (u_1[i-1,1:-1] - u_1[i,1:-1])  \
             + dtdy2*( (q[i,1:-1] + q[i,2:])      * (u_1[i,2:]      - u_1[i,1:-1])  \
             -         (q[i,1:-1] + q[i,:-2])     * (u_1[i,1:-1]    - u_1[i,:-2])))

        j = Iy[0] # 1) Boundary where y = 0
        u[1:-1,j] = A*( 2*u_1[1:-1,j] + B*u_2[1:-1,j] + dt2*f[1:-1,j]               \
               + dtdx2*( (q[1:-1,j] + q[2:,j])     * (u_1[2:,j]     - u_1[1:-1,j])  \
               -         (q[1:-1,j] + q[:-2,j])    * (u_1[1:-1,j]   - u_1[:-2,j]))  \
               + dtdy2*2*(q[1:-1,j] + q[1:-1,j+1]) * (u_1[1:-1,j+1] - u_1[1:-1,j]) )

        j = Iy[-1] # 1) Boundary where y = Ny
        u[1:-1,j] = A*( 2*u_1[1:-1,j] + B*u_2[1:-1,j] + dt2*f[1:-1,j]               \
               + dtdx2*( (q[1:-1,j] + q[2:,j])     * (u_1[2:,j]     - u_1[1:-1,j])  \
               -         (q[1:-1,j] + q[:-2,j])    * (u_1[1:-1,j]   - u_1[:-2,j]))  \
               + dtdy2*2*(q[1:-1,j] + q[1:-1,j-1]) * (u_1[1:-1,j-1] - u_1[1:-1,j]) )

        # Special formula for the four corner points
        i = Ix[0]; j = Iy[0]
        u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f[i,j]  \
               + dtdx2*2*(q[i,j] + q[i+1,j]) * (u_1[i+1,j] - u_1[i,j])  \
               + dtdy2*2*(q[i,j] + q[i,j+1]) * (u_1[i,j+1] - u_1[i,j]))

        i = Ix[0]; j = Iy[-1]
        u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f[i,j]  \
               + dtdx2*2*(q[i,j] + q[i+1,j]) * (u_1[i+1,j] - u_1[i,j])  \
               + dtdy2*2*(q[i,j] + q[i,j-1]) * (u_1[i,j-1] - u_1[i,j]))

        i = Ix[-1]; j = Iy[0]
        u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f[i,j]  \
               + dtdx2*2*(q[i,j] + q[i-1,j]) * (u_1[i-1,j] - u_1[i,j])  \
               + dtdy2*2*(q[i,j] + q[i,j+1]) * (u_1[i,j+1] - u_1[i,j]))

        i = Ix[-1]; j = Iy[-1]
        u[i,j] = A*( 2*u_1[i,j] + B*u_2[i,j] + dt2*f[i,j]  \
               + dtdx2*2*(q[i,j] + q[i-1,j]) * (u_1[i-1,j] - u_1[i,j])  \
               + dtdy2*2*(q[i,j] + q[i,j-1]) * (u_1[i,j-1] - u_1[i,j]))
    CPU_time = time.clock() - t1
    return u,CPU_time