def value_color(cls, value): import matplotlib.cm as cm if value is None or np.isnan(value): rgb = (128, 128, 128) else: cmap_low = config_get('cmap_low', 38) cmap_high = config_get('cmap_high', 218) cmap_range = cmap_high - cmap_low cmap = cm.RdYlGn(int(cmap_range * value + cmap_low))[:3] rgb = tuple([x * 256 for x in cmap]) return rgb
def value_color(cls, value): import matplotlib.cm as cm if value is None or np.isnan(value): rgb = (128,128,128) else: cmap_low = config_get('cmap_low',38) cmap_high = config_get('cmap_high',218) cmap_range = cmap_high - cmap_low cmap = cm.RdYlGn(int(cmap_range*value+cmap_low))[:3] rgb = tuple([x*256 for x in cmap]) return rgb
def test_json_config(self): from sciunit.utils import config_get config_path = os.path.join(sciunit.__path__[0],'config.json') print(config_path) self.assertTrue(os.path.isfile(config_path)) cmap_low = config_get('cmap_low') self.assertTrue(isinstance(cmap_low,int)) dummy = config_get('dummy',37) self.assertEqual(dummy,37) try: config_get('dummy') except sciunit.Error as e: self.assertTrue('does not contain key' in str(e))
def test_json_config(self): from sciunit.utils import config_get, create_config, DEFAULT_CONFIG from pathlib import Path config_path = Path.home() / ".sciunit" / "config.json" create_config(DEFAULT_CONFIG) self.assertTrue(config_path.is_file()) cmap_low = config_get("cmap_low") self.assertTrue(isinstance(cmap_low, int)) dummy = config_get("dummy", 37) self.assertEqual(dummy, 37) try: config_get("dummy") except sciunit.Error as e: self.assertTrue("does not contain key" in str(e))
def value_color(cls, value: Union[float, 'Score']) -> tuple: """Get a RGB color based on the Score. Args: value (Union[float,): [description] Returns: tuple: [description] """ import matplotlib.cm as cm if value is None or np.isnan(value): rgb = (128, 128, 128) else: cmap_low = config_get('cmap_low', 38) cmap_high = config_get('cmap_high', 218) cmap_range = cmap_high - cmap_low cmap = cm.RdYlGn(int(cmap_range * value + cmap_low))[:3] rgb = tuple([x * 256 for x in cmap]) return rgb
from neuronunit.optimization.optimization_management import ( dtc_to_rheo, inject_and_plot_model, ) import numpy as np from neuronunit.optimization.data_transport_container import DataTC as GenericModel from jithub.models import model_classes import matplotlib.pyplot as plt import quantities as qt import os from sciunit.scores import RelativeDifferenceScore, ZScore from sciunit.utils import config_set, config_get config_set("PREVALIDATE", False) assert config_get("PREVALIDATE") is False class testOptimizationAllenMultiSpike(unittest.TestCase): def setUp(self): self = self # In principle any index into data should work # but '1' is chosen here. Robust tests would use any index. self.ids = [ 324257146, 325479788, 476053392, 623893177, 623960880, 482493761, 471819401,