Exemple #1
0
def greed(G, iterations, cost_schedule, land, ws, greed_i):

    colormap = []
    score_array = []

    # vraag de kleur op van een specifieke node
    color = nx.get_node_attributes(G, 'color')
    for node in G.nodes():
        # voeg de kleur toe in de array
        colormap.append(color[node])

    # bereken de score
    tScore = scoreCounter(G, cost_schedule)

    loopA = iterations
    for i in range(loopA):
        G = greedy(G, colormap, cost_schedule, tScore)
        tScore, Temp = scoreCounter(G, cost_schedule)

        score_array.append(tScore)
        print("score ", tScore)

    excel_writer_greedy(score_array, land, greed_i, ws)

    return G, tScore
def hillclimber(G, iterations, cost_schedule, land, hill_i):
	print(hill_i)
	best_G = copy.deepcopy(G)
	
	alle_scores = []
	for iter in range(iterations):

		
		# EXPONENTIAL
		T = iterations * (0.995 ** (iter * 20))
		# store the old state
		old_G = copy.deepcopy(G)


		old_S, colormap = scoreCounter(old_G, cost_schedule)

		# randomly swap a node's color
		G = randomSwap(G)

		# get the new score
		new_S, colormap = scoreCounter(G, cost_schedule)

		# keep the new state if its an improvement

		if new_S < old_S:

			alle_scores.append(new_S)

			if new_S < beste_scores[0]:
				beste_scores.append(new_S)
				beste_scores.sort()
				best_G = copy.deepcopy(G)

			# print(new_S)
			old_S = new_S
			old_G = G




		elif sAnneal(T, old_S, new_S) == 1:
			alle_scores.append(new_S)
 
			# print("ANEEALING DONEEEE")
			old_S = new_S
			old_G = G

		# go back to the previous state since it's worse
		else:
			G = old_G

	# excel_writer(alle_scores, land, ws, hill_i, iterations)
	# print(beste_scores)

	return best_G, old_S
Exemple #3
0
def main():

    # maak een random indeling
    land = input("welk land wil je plotten? (RUSSIA/UKRAINE/USA) ")
    nodescsv = land + "/nodes.csv"
    edgescsv = land + "/edges.csv"

    G = dataLoader(nodescsv, edgescsv)
    G = rand(G)

    cost_table = int(input("welke kosten tabel? 1 t/m 4 ")) - 1

    # bereken de score
    total_costs, colormap = scoreCounter(G, cost_table)

    destination = land + "/hiScore.xls"
    algo = input('welke algoritme? (random/greedy/hillclimber) ')
    if algo == 'random':
        # show de random indeling
        dataWriter(G, destination, cost_table, total_costs, algo)
        title = land + " Score " + str(total_costs)
        nx.draw_networkx(G, with_labels=True, node_color=colormap)
        plt.title(title)
        plt.show()

    if algo == 'greedy':
        greed_nr = int(input("how many times do you want to run greedy? "))
        iter = int(input("how many iterations? "))
        wb = xlwt.Workbook()

        ws = wb.add_sheet("Scores", cell_overwrite_ok=True)
        for greed_i in range(greed_nr):
            G, score = greed(G, iter, cost_table, land, ws, greed_i)
            total_costs, colormap = scoreCounter(G, cost_table)
            dataWriter(G, destination, cost_table, total_costs, algo)
            G = rand(G)

        destin = land + "/greedy_scores.xls"
        wb.save(destin)

    if algo == 'hillclimber':
        hill_nr = int(
            input("how many times do you want to run the hillclimber? "))
        iter = int(input("how many iterations? "))
        wb = xlwt.Workbook()

        ws = wb.add_sheet("Scores", cell_overwrite_ok=True)
        for hill_i in range(hill_nr):
            G, score = hillclimber(G, iter, cost_table, land, ws, hill_i)
            total_costs, colormap = scoreCounter(G, cost_table)
            dataWriter(G, destination, cost_table, total_costs, algo)
            G = rand(G)

        destin = land + "/hill_climber_scores.xls"
        wb.save(destin)
def hillOld(G, iterations, cost_schedule):
    colormap = []

    # vraag de kleur op van een specifieke node
    color = nx.get_node_attributes(G, 'color')
    for node in G.nodes():
        # voeg de kleur toe in de array
        colormap.append(color[node])

    # bereken de score
    tScore = scoreCounter(G, cost_schedule)
    print(tScore, " score")

    loopA = iterations
    for i in range(loopA):
        G = hillclimber(G, colormap, cost_schedule, tScore)
        tScore = scoreCounter(G, cost_schedule)
        print(tScore, " scoreF1")

    return G, tScore
def main():

    # maak een random indeling
    land = "UKRAINE"
    nodescsv = land + "/nodes.csv"
    edgescsv = land + "/edges.csv"

    G = dataLoader(nodescsv, edgescsv)
    G = rand(G)

    cost_table = 2

    # bereken de score
    total_costs, colormap = scoreCounter(G, cost_table)

    destination = land + "/hiScore.xls"
    algo = "greedy"
    if algo == 'random':
        # show de random indeling
        dataWriter(G, destination, cost_table, total_costs, algo)
        nx.draw_networkx(G, with_labels=True, node_color=colormap)
        plt.show()

    if algo == 'greedy':
        iter = 5
        # # draai hillclimber x aantal keer
        G, score = greed(G, iter, cost_table)
        total_costs, colormap = scoreCounter(G, cost_table)
        dataWriter(G, destination, cost_table, total_costs, algo)

        nx.draw_networkx(G, with_labels=True, node_color=colormap)
        plt.show()
    if algo == 'hillclimber':
        iter = int(input("how many iterations? "))
        G, score = hillclimber(G, iter, cost_table)
        total_costs, colormap = scoreCounter(G, cost_table)
        dataWriter(G, destination, cost_table, total_costs, algo)

        nx.draw_networkx(G, with_labels=True, node_color=colormap)
        plt.show()
from scorecalculator import scoreCounter

G = nx.Graph()
land = input("welk land wil je plotten? (RUSSIA/UKRAINE/USA) ")
destination = land + "/hiScore.xls"
edgescsv = land + "/edges.csv"
book = xlrd.open_workbook(destination)
sh = book.sheet_by_index(0)
n = 0

for rows in sh.col(0):
    G.add_node(str(rows.value), color=sh.col(1)[n].value)
    n += 1

G.remove_node(str(sh.col(0)[0].value))
cost_table = int(sh.col(0)[0].value - 1)

# lijnen tussen staten
with open(edgescsv, 'r') as csvfile:
    plots = csv.reader(csvfile, delimiter=',')
    for row in plots:
        G.add_edge(str(row[0]), str(row[1]))

# lees de oude score uit file
total_costs, colormap = scoreCounter(G, cost_table)

title = land + " Score " + str(total_costs)
nx.draw_networkx(G, with_labels=True, node_color=colormap)
plt.title(title)
plt.show()