Exemple #1
0
def testVvGlobCoup(data, true_inc):
    output_line = (
        'Varying Variances Globally Coupled Bayesian Piece-Wise Linear Regression with moves on '
        + 'change-points and parent sets on Yeast Data.')
    print(output_line)
    logger.info(output_line)  # Print and write output

    baNet = Network(data, args.chain_length, args.burn_in)
    baNet.infer_network('var_glob_coup_nh_dbn')

    adjMatrixRoc(baNet.proposed_adj_matrix, true_inc, args.verbose)

    # save the chain into the output folder
    save_chain('vv_glob_coup_dbn.pckl', baNet)
Exemple #2
0
def testSeqCoupPwBlrWithCpsParentMoves(data, true_inc):
    output_line = (
        'Sequentially Coupled Bayesian Piece-Wise Linear Regression with moves on '
        + 'change-points and parent sets on Yeast data.')
    print(output_line)
    logger.info(output_line)  # Print and write output

    baNet = Network(data, args.chain_length, args.burn_in)
    baNet.infer_network('seq_coup_nh_dbn')

    adjMatrixRoc(baNet.proposed_adj_matrix, true_inc, args.verbose)

    # save the chain into the output folder
    save_chain('seq_coup_dbn.pckl', baNet)
Exemple #3
0
def testPwBlrWithCpsParentMoves(data, true_inc):
    output_line = ('Bayesian Piece-Wise Linear Regression with moves on ' +
                   'change-points and parent sets for the Yeast data.')
    print(output_line)
    logger.info(output_line)  # Print and write output
    if args.change_points == 0:
        args.change_points = []
    args.change_points.append(data.shape[0] +
                              1)  # append the len data + 1 so the algo works
    baNet = Network(data, args.chain_length, args.burn_in)
    baNet.infer_network('varying_nh_dbn')

    adjMatrixRoc(baNet.proposed_adj_matrix, true_inc, args.verbose)

    # save the chain into the output folder
    save_chain('nh_dbn.pckl', baNet)
Exemple #4
0
def testPwBlrWithParentMoves(data, true_inc):
    output_line = (
        'Bayesian Piece-Wise Linear Regression with moves on ' +
        'the parent set only with fixed changepoints for the Yeast Data. \n')
    print(output_line)
    logger.info(output_line)  # Print and write output
    if args.change_points == 0:
        args.change_points = []
    args.change_points.append(data.shape[0] +
                              1)  # append the len data + 1 so the algo works
    baNet = Network(data, args.chain_length, args.burn_in,
                    args.change_points)  # Create theh BN obj
    baNet.infer_network(
        'fixed_nh_dbn')  # Do the fixed changepoints version of the DBN algo

    adjMatrixRoc(baNet.proposed_adj_matrix, true_inc,
                 args.verbose)  # check the ROC
Exemple #5
0
def testPwBlrWithCpsParentMoves(coefs):
    output_line = ('Bayesian Piece-Wise Linear Regression with moves on' +
                   'change-points and parent sets.')
    print(output_line)
    logger.info(output_line)  # Print and write output

    # Generate data to test our algo
    network, _, adjMatrix = generateNetwork(args.num_features, args.num_indep,
                                            coefs, args.num_samples,
                                            args.change_points, args.verbose,
                                            args.generated_noise_var)

    baNet = Network(network, args.chain_length, args.burn_in)
    baNet.infer_network('varying_nh_dbn')

    trueAdjMatrix = adjMatrix[
        0]  # For the moment we just get the adj matrix of the first cp
    adjMatrixRoc(baNet.proposed_adj_matrix, trueAdjMatrix, args.verbose)
Exemple #6
0
def testPwBlrWithParentMoves(coefs):
    output_line = ('Bayesian Piece-Wise Linear Regression with moves on' +
                   'the parent set only with fixed changepoints. \n')
    print(output_line)
    logger.info(output_line)  # Print and write output

    # Generate data to test our algo
    network, _, adjMatrix = generateNetwork(args.num_features, args.num_indep,
                                            coefs, args.num_samples,
                                            args.change_points, args.verbose,
                                            args.generated_noise_var)

    baNet = Network(network, args.chain_length, args.burn_in,
                    args.change_points)  # Create theh BN obj
    baNet.infer_network(
        'fixed_nh_dbn')  # Do the fixed chnagepoints version of the DBN algo

    trueAdjMatrix = adjMatrix[
        0]  # For the moment we just get the adj matrix of the first cp
    adjMatrixRoc(baNet.proposed_adj_matrix, trueAdjMatrix, args.verbose)
Exemple #7
0
def test_h_dbn(data, true_inc):
    output_line = ('Bayesian Linear Regression with moves on ' +
                   'the parent set only for the Yeast data. \n')
    print(output_line)
    logger.info(output_line)  # Print and write output

    change_points = [
    ]  # set the cps empty list because this is the homegeneous version

    # Create/Call the Network objects/methods
    baNet = Network(data, args.chain_length, args.burn_in,
                    args.change_points)  # Create theh BN obj
    baNet.infer_network(
        'h_dbn')  # Do the fixed parents version of the DBN algo

    # trueAdjMatrix = adjMatrix[0] # For the moment we just get the adj matrix of the first cp
    adjMatrixRoc(baNet.proposed_adj_matrix, true_inc, args.verbose)

    # save the chain into the output folder
    save_chain('h_dbn.pckl', baNet)
Exemple #8
0
def test_h_dbn(coefs):
    output_line = ('Bayesian Linear Regression with moves on' +
                   'the parent set only. \n')
    print(output_line)
    logger.info(output_line)  # Print and write output

    change_points = [
    ]  # set the cps empty list because this is the homegeneous version
    # Generate data to test our algo
    network, _, adjMatrix = generateNetwork(args.num_features, args.num_indep,
                                            coefs, args.num_samples,
                                            change_points, args.verbose,
                                            args.generated_noise_var)

    baNet = Network(network, args.chain_length, args.burn_in,
                    args.change_points)  # Create theh BN obj
    baNet.infer_network(
        'h_dbn')  # Do the fixed parents version of the DBN algo

    trueAdjMatrix = adjMatrix[
        0]  # For the moment we just get the adj matrix of the first cp
    adjMatrixRoc(baNet.proposed_adj_matrix, trueAdjMatrix, args.verbose)