def import_data_fn(self): deltat= 1000/float(self.text_1) #pickle.dump(tif.asarray(), open('extra.p',"wb")) ab = self.tif.asarray().astype(np.float64) print('shape',ab.shape) scanObject(filename,par_obj,[deltat,float(self.text_2)/1000000],ab,0,0); win_obj.bleachCorr1 = False win_obj.bleachCorr2 = False win_obj.label.generateList() self.win_obj.image_status_text.showMessage("Correlating carpet: File " +str(self.win_obj.file_import.file_index+1)+' of '+str(self.win_obj.file_import.file_list.__len__())) self.win_obj.app.processEvents() if win_obj.last_in_list == False: print ('moving to next file') win_obj.file_import.load_next_file() else: print( 'finished with all files') win_obj.file_import.post_initial_import()
def import_data_fn(self): deltat= 1000/float(self.text_1) data_array = tif_fn.imread(str(filename),key=0) scanObject(filename,par_obj,[deltat,float(self.text_2)/1000000],data_array,0,0); win_obj.bleachCorr1 = False win_obj.bleachCorr2 = False win_obj.DeltatEdit.setText(str(deltat)); win_obj.label.generateList() self.win_obj.image_status_text.showMessage("Correlating carpet: File " +str(self.win_obj.file_import.file_index+1)+' of '+str(self.win_obj.file_import.file_list.__len__())) self.win_obj.app.processEvents() if win_obj.last_in_list == False: print( 'moving to next file') win_obj.file_import.load_next_file() else: print ('finished with all files') win_obj.file_import.post_initial_import()
def import_data_fn(self): """Populates the scannning FCS software with the data.""" self.imDataDesc[7] = self.stack_ind['name'] self.imDataDesc[6] = float(self.text_2) / 1000000 self.imDataDesc[3] = self.stack_ind['size'] self.imDataDesc[4] = [1.0 / float(self.text_1)] self.imDataDesc[2] = ['Red'] scanObject(self.stack_ind['title'], self.par_obj, self.imDataDesc, self.stack_ind['image'].astype(np.float64), 0, 0) self.win_obj.bleachCorr1 = False self.win_obj.bleachCorr2 = False self.win_obj.label.generateList() self.par_obj.objectRef[-1].cb.setChecked(True) self.par_obj.objectRef[-1].plotOn = True self.win_obj.image_status_text.showMessage( "Correlating carpet: " + str(self.ind) + " of " + str(self.selList.__len__()) + ". File " + str(self.win_obj.file_import.file_index + 1) + ' of ' + str(self.win_obj.file_import.file_list.__len__())) if self.ind < self.selList.__len__(): self.ind = self.ind + 1 if self.ind == self.selList.__len__(): self.win_obj.last_in_file = True self.next_index(self.ind - 1) else: self.win_obj.app.processEvents() #Is it the last file in the list if self.win_obj.last_in_list == False: print('moving to next file') self.win_obj.file_import.load_next_file() else: print('finished with all files') self.win_obj.file_import.post_initial_import()
def import_lif_sing(self, selList): """Loads the individual lif raw data in to the scanning software""" self.imDataStore = [] self.imDataDesc = [] count_loaded = 0 #Memory reading happens once. while True: #Unpacks header for pixel encoding memory. try: struct.unpack('i', self.f.read(4))[0] except: break struct.unpack('i', self.f.read(4))[0] self.f.read(1) if platform.system() == 'Darwin': memSize = struct.unpack('l', self.f.read(8))[0] elif platform.system() == 'Windows': memSize = struct.unpack('l', self.f.read(4))[0] memSize2 = struct.unpack('l', self.f.read(4))[0] else: memSize = struct.unpack('l', self.f.read(8))[0] self.f.read(1) c = struct.unpack('i', self.f.read(4))[0] memDesc = bytearray() for i in range(0, c * 2): memDesc.extend(bytes(self.f.read(1))) #print struct.unpack('i', f.read(4))[0] #Read a memory block of the correct size. #imBinData = self.f.read(memSize) memDesc = memDesc.translate(None, b'\x00').decode("utf-8") #loadImBool = (memDesc in memId ) loadImBool = False #Catch data if it happens to be in array for b in selList: #print memDesc+' '+temp[0] if self.meta_array[b]['memid'] == memDesc: loadImBool = True bytesInc = self.meta_array[b]['bytesinc'] count_loaded += 1 self.win_obj.image_status_text.showMessage( "Processing carpet: " + str(count_loaded) + " of " + str(selList.__len__()) + ". From file: " + str(self.win_obj.file_import.file_num + 1) + " of " + str(self.win_obj.file_import.file_list.__len__()) + ".") self.win_obj.app.processEvents() break #If memDesc and temp are in list. if memSize > 0 and loadImBool == True: #This is where the actual data is read in. imBinData = self.f.read(memSize) if bytesInc == 1: imData = [0] * imBinData.__len__() for iv in range(0, imBinData.__len__(), 1): byteData = struct.unpack('B', imBinData[iv:iv + 1])[0] imData[iv] = byteData if bytesInc == 2: imData = [0] * int(imBinData.__len__() / 2) cc = 0 for iv in range(0, imBinData.__len__(), 2): byteData = struct.unpack('H', imBinData[iv:iv + 2])[0] imData[cc] = byteData cc = cc + 1 self.imDataStore.append(imData) self.imDataDesc.append(self.meta_array[b]) else: if count_loaded == selList.__len__(): break footer = self.f.tell() self.f.seek(footer + memSize) s = [] self.f.close() self.win_obj.update_correlation_parameters() self.parObj.total_sub_files = self.imDataDesc.__len__() for i in range(self.imDataDesc.__len__()): self.parObj.file_sub = i self.win_obj.image_status_text.showMessage( "Correlating carpet: " + str(i + 1) + " of " + str(self.imDataDesc.__len__()) + ". From file: " + str(self.win_obj.file_import.file_num + 1) + " of " + str(self.win_obj.file_import.file_list.__len__()) + ".") self.win_obj.fit_obj.app.processEvents() s.append( scanObject(self.fname, self.parObj, self.imDataDesc[i], self.imDataStore[i], 0, 0)) self.win_obj.bleachCorr1 = False self.win_obj.bleachCorr2 = False self.win_obj.label.generateList() self.win_obj.image_status_text.showMessage("Data plotted.")