def testModelIdentification(self): """ generate VAR signals, mix them, and see if MVARICA can reconstruct the signals do this for every backend """ # original model coefficients b0 = np.zeros((3, 6)) b0[1:3, 2:6] = [[0.4, -0.2, 0.3, 0.0], [-0.7, 0.0, 0.9, 0.0]] m0 = b0.shape[0] l, t = 1000, 100 # generate VAR sources with non-gaussian innovation process, otherwise ICA won't work noisefunc = lambda: np.random.normal(size=(1, m0)) ** 3 var = VAR(2) var.coef = b0 sources = var.simulate([l, t], noisefunc) # simulate volume conduction... 3 sources measured with 7 channels mix = [[0.5, 1.0, 0.5, 0.2, 0.0, 0.0, 0.0], [0.0, 0.2, 0.5, 1.0, 0.5, 0.2, 0.0], [0.0, 0.0, 0.0, 0.2, 0.5, 1.0, 0.5]] data = datatools.dot_special(sources, mix) backend_modules = [import_module('scot.backend.' + b) for b in scot.backend.__all__] for bm in backend_modules: api = scot.Workspace({'model_order': 2}, backend=bm.backend) api.set_data(data) # apply MVARICA # - default setting of 0.99 variance should reduce to 3 channels with this data # - automatically determine delta (enough data, so it should most likely be 0) api.do_mvarica() #result = varica.mvarica(data, 2, delta='auto', backend=bm.backend) # ICA does not define the ordering and sign of components # so wee need to test all combinations to find if one of them fits the original coefficients permutations = np.array( [[0, 1, 2, 3, 4, 5], [0, 1, 4, 5, 2, 3], [2, 3, 4, 5, 0, 1], [2, 3, 0, 1, 4, 5], [4, 5, 0, 1, 2, 3], [4, 5, 2, 3, 0, 1]]) signperms = np.array( [[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, -1, -1], [1, 1, -1, -1, 1, 1], [1, 1, -1, -1, -1, -1], [-1, -1, 1, 1, 1, 1], [-1, -1, 1, 1, -1, -1], [-1, -1, -1, -1, 1, 1], [-1, -1, -1, -1, -1, -1]]) best, d = np.inf, None for perm in permutations: b = api.var_.coef[perm[::2] // 2, :] b = b[:, perm] for sgn in signperms: c = b * np.repeat([sgn], 3, 0) * np.repeat([sgn[::2]], 6, 0).T err = np.sum((c - b0) ** 2) if err < best: best = err d = c self.assertTrue(np.all(abs(d - b0) < 0.05))
def test_predict(self): l = 100000 var = VAR(2) var.coef = np.array([[0.2, 0.1, 0.4, -0.1], [0.3, -0.2, 0.1, 0]]) x = var.simulate(l) z = var.predict(x) # that limit is rather generous, but we don't want tests to fail due to random variation self.assertTrue(np.abs(np.var(x[100:, :] - z[100:, :]) - 1) < 0.02)
def test_whiteness(self): r = np.random.randn(100, 5, 10) # gaussian white noise r0 = r.copy() var = VAR(0) var.residuals = r p = var.test_whiteness(20) self.assertTrue(np.all(r == r0)) # make sure we don't modify the input self.assertTrue(p>0.05) # test should be non-significant for white noise r[3:,1,:] = r[:-3,0,:] # create cross-correlation at lag 3 p = var.test_whiteness(20) self.assertFalse(p>0.05) # now test should be significant
def test_simulate(self): noisefunc = lambda: [1, 1] # use deterministic function instead of noise num_samples = 100 b = np.array([[0.2, 0.1, 0.4, -0.1], [0.3, -0.2, 0.1, 0]]) var = VAR(2) var.coef = b x = var.simulate(num_samples, noisefunc) # make sure we got expected values within reasonable accuracy for n in range(10, num_samples): self.assertTrue(np.all( np.abs(x[n, :] - 1 - np.dot(b[:, 0::2], x[n - 1, :]) - np.dot(b[:, 1::2], x[n - 2, :])) < epsilon))
def testModelIdentification(self): """ generate independent signals, mix them, and see if ICA can reconstruct the mixing matrix do this for every backend """ # original model coefficients b0 = np.zeros((3, 3)) # no connectivity m0 = b0.shape[0] l, t = 100, 100 # generate VAR sources with non-gaussian innovation process, otherwise ICA won't work noisefunc = lambda: np.random.normal(size=(1, m0)) ** 3 var = VAR(1) var.coef = b0 sources = var.simulate([l, t], noisefunc) # simulate volume conduction... 3 sources measured with 7 channels mix = [[0.5, 1.0, 0.5, 0.2, 0.0, 0.0, 0.0], [0.0, 0.2, 0.5, 1.0, 0.5, 0.2, 0.0], [0.0, 0.0, 0.0, 0.2, 0.5, 1.0, 0.5]] data = datatools.dot_special(sources, mix) backend_modules = [import_module('scot.backend.' + b) for b in scot.backend.__all__] for bm in backend_modules: result = plainica.plainica(data, backend=bm.backend) i = result.mixing.dot(result.unmixing) self.assertTrue(np.allclose(i, np.eye(i.shape[0]), rtol=1e-6, atol=1e-7)) permutations = [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]] bestdiff = np.inf bestmix = None absmix = np.abs(result.mixing) absmix /= np.max(absmix) for p in permutations: estmix = absmix[p, :] diff = np.sum((np.abs(estmix) - np.abs(mix)) ** 2) if diff < bestdiff: bestdiff = diff bestmix = estmix self.assertTrue(np.allclose(bestmix, mix, rtol=1e-1, atol=1e-1))
def test_residuals(self): l = 100000 var0 = VAR(2) var0.coef = np.array([[0.2, 0.1, 0.4, -0.1], [0.3, -0.2, 0.1, 0]]) x = var0.simulate(l) var = VAR(2) var.fit(x) self.assertEqual(x.shape, var.residuals.shape) self.assertTrue(np.allclose(var.rescov, np.eye(var.rescov.shape[0]), 1e-2, 1e-2))
def test_fit(self): var0 = VAR(2) var0.coef = np.array([[0.2, 0.1, 0.4, -0.1], [0.3, -0.2, 0.1, 0]]) l = 100000 x = var0.simulate(l) y = x.copy() var = VAR(2) var.fit(x) # make sure the input remains unchanged self.assertTrue(np.all(x == y)) # that limit is rather generous, but we don't want tests to fail due to random variation self.assertTrue(np.all(np.abs(var0.coef - var.coef) < 0.02))
def test_fit_regularized(self): l = 100000 var0 = VAR(2) var0.coef = np.array([[0.2, 0.1, 0.4, -0.1], [0.3, -0.2, 0.1, 0]]) x = var0.simulate(l) y = x.copy() var = VAR(10, delta=1) var.fit(x) # make sure the input remains unchanged self.assertTrue(np.all(x == y)) b0 = np.zeros((2, 20)) b0[:, 0:2] = var0.coef[:, 0:2] b0[:, 10:12] = var0.coef[:, 2:4] # that limit is rather generous, but we don't want tests to fail due to random variation self.assertTrue(np.all(np.abs(b0 - var.coef) < 0.02))
def testFunctionality(self): """ generate VAR signals, and apply the api to them do this for every backend """ # original model coefficients b01 = np.zeros((3, 6)) b02 = np.zeros((3, 6)) b01[1:3, 2:6] = [[0.4, -0.2, 0.3, 0.0], [-0.7, 0.0, 0.9, 0.0]] b02[0:3, 2:6] = [[0.4, 0.0, 0.0, 0.0], [0.4, 0.0, 0.4, 0.0], [0.0, 0.0, 0.4, 0.0]] m0 = b01.shape[0] cl = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1, 0]) l = 1000 t = len(cl) # generate VAR sources with non-gaussian innovation process, otherwise ICA won't work noisefunc = lambda: np.random.normal(size=(1, m0)) ** 3 var = VAR(2) var.coef = b01 sources1 = var.simulate([l, sum(cl==0)], noisefunc) var.coef = b02 sources2 = var.simulate([l, sum(cl==1)], noisefunc) var.fit(sources1) print(var.coef) var.fit(sources2) print(var.coef) sources = np.zeros((l,m0,t)) sources[:,:,cl==0] = sources1 sources[:,:,cl==1] = sources2 # simulate volume conduction... 3 sources measured with 7 channels mix = [[0.5, 1.0, 0.5, 0.2, 0.0, 0.0, 0.0], [0.0, 0.2, 0.5, 1.0, 0.5, 0.2, 0.0], [0.0, 0.0, 0.0, 0.2, 0.5, 1.0, 0.5]] data = datatools.dot_special(sources, mix) backend_modules = [import_module('scot.backend.' + b) for b in scot.backend.__all__] for bm in backend_modules: api = scot.Workspace({'model_order': 2}, reducedim=3, backend=bm.backend) api.set_data(data) api.do_ica() self.assertEqual(api.mixing_.shape, (3, 7)) self.assertEqual(api.unmixing_.shape, (7, 3)) api.do_mvarica() self.assertEqual(api.get_connectivity('S').shape, (3, 3, 512)) api.set_data(data) api.fit_var() self.assertEqual(api.get_connectivity('S').shape, (3, 3, 512)) self.assertEqual(api.get_tf_connectivity('S', 100, 50).shape, (3, 3, 512, 18)) api.set_data(data, cl) self.assertFalse(np.any(np.isnan(api.data_))) self.assertFalse(np.any(np.isinf(api.data_))) api.do_cspvarica() self.assertFalse(np.any(np.isnan(api.activations_))) self.assertFalse(np.any(np.isinf(api.activations_))) self.assertEqual(api.get_connectivity('S').shape, (3,3,512)) self.assertFalse(np.any(np.isnan(api.activations_))) self.assertFalse(np.any(np.isinf(api.activations_))) for c in np.unique(cl): api.set_used_labels([c]) api.fit_var() fc = api.get_connectivity('S') self.assertEqual(fc.shape, (3, 3, 512)) tfc = api.get_tf_connectivity('S', 100, 50) self.assertEqual(tfc.shape, (3, 3, 512, 18)) api.set_data(data) api.remove_sources([0, 2]) api.fit_var() self.assertEqual(api.get_connectivity('S').shape, (1, 1, 512)) self.assertEqual(api.get_tf_connectivity('S', 100, 50).shape, (1, 1, 512, 18))