Exemple #1
0
    def hamiltonian(self) -> csc_matrix:
        """
        Returns Hamiltonian in basis obtained by employing harmonic basis for
        :math:`\\phi, \\zeta` and charge basis for :math:`\\theta`.
        """
        phi_osc_mat = self._kron3(
            op.number_sparse(self._dim_phi(), self.phi_plasma()),
            self._identity_zeta(),
            self._identity_theta(),
        )

        zeta_osc_mat = self._kron3(
            self._identity_phi(),
            op.number_sparse(self._dim_zeta(), self.zeta_plasma()),
            self._identity_theta(),
        )

        cross_kinetic_mat = (
            2 * self._disordered_ecj() *
            (self.n_theta_operator() - self.total_identity() * self.ng -
             self.n_zeta_operator())**2)

        phi_flux_term = self._cos_phi_operator() * np.cos(
            self.flux * np.pi) - self._sin_phi_operator() * np.sin(
                self.flux * np.pi)
        junction_mat = (-2 * self.EJ * self._kron3(
            phi_flux_term, self._identity_zeta(), self._cos_theta_operator()) +
                        2 * self.EJ * self.total_identity())

        disorder_l = (-2 * self._disordered_el() * self.dL *
                      self._kron3(self._phi_operator(), self._zeta_operator(),
                                  self._identity_theta()))

        dis_phi_flux_term = self._sin_phi_operator() * np.cos(
            self.flux * np.pi) + self._cos_phi_operator() * np.sin(
                self.flux * np.pi)
        disorder_j = (2 * self.EJ * self.dEJ *
                      self._kron3(dis_phi_flux_term, self._identity_zeta(),
                                  self._sin_theta_operator()))

        dis_c_opt = (
            self._kron3(self._n_phi_operator(), self._identity_zeta(),
                        self._n_theta_operator()) -
            self.n_phi_operator() * self.ng -
            self._kron3(self._n_phi_operator(), self._n_zeta_operator(),
                        self._identity_theta()))
        disorder_c = -4 * self._disordered_ecj() * self.dCJ * dis_c_opt

        return (phi_osc_mat + zeta_osc_mat + cross_kinetic_mat + junction_mat +
                disorder_l + disorder_j + disorder_c)
Exemple #2
0
    def hamiltonian(
        self,
        return_parts: bool = False
    ) -> Union[csc_matrix, Tuple[csc_matrix, ndarray, ndarray, float]]:
        """Returns Hamiltonian in basis obtained by discretizing phi, employing charge basis for theta, and Fock
        basis for zeta.

        Parameters
        ----------
        return_parts:
            If set to true, `hamiltonian` returns [hamiltonian, evals, evecs, g_coupling_matrix]
        """
        zeropi_dim = self.zeropi_cutoff
        zeropi_evals, zeropi_evecs = self._zeropi.eigensys(
            evals_count=zeropi_dim)
        zeropi_diag_hamiltonian = sparse.dia_matrix((zeropi_dim, zeropi_dim),
                                                    dtype=np.complex_)
        zeropi_diag_hamiltonian.setdiag(zeropi_evals)

        zeta_dim = self.zeta_cutoff
        prefactor = self.E_zeta

        zeta_diag_hamiltonian = op.number_sparse(zeta_dim, prefactor)

        hamiltonian_mat = sparse.kron(
            zeropi_diag_hamiltonian,
            sparse.identity(zeta_dim, format="dia", dtype=np.complex_),
        )
        hamiltonian_mat += sparse.kron(
            sparse.identity(zeropi_dim, format="dia", dtype=np.complex_),
            zeta_diag_hamiltonian,
        )

        gmat = self.g_coupling_matrix(zeropi_evecs)
        zeropi_coupling = sparse.dia_matrix((zeropi_dim, zeropi_dim),
                                            dtype=np.complex_)
        for l1 in range(zeropi_dim):
            for l2 in range(zeropi_dim):
                zeropi_coupling += gmat[l1, l2] * op.hubbard_sparse(
                    l1, l2, zeropi_dim)
        hamiltonian_mat += sparse.kron(
            zeropi_coupling, op.annihilation_sparse(zeta_dim)) + sparse.kron(
                zeropi_coupling.conjugate().T, op.creation_sparse(zeta_dim))

        if return_parts:
            return (hamiltonian_mat.tocsc(), zeropi_evals, zeropi_evecs, gmat)

        return hamiltonian_mat.tocsc()
Exemple #3
0
    def hamiltonian(self, return_parts=False):
        """Returns Hamiltonian in basis obtained by discretizing phi, employing charge basis for theta, and Fock
        basis for zeta.

        Parameters
        ----------
        return_parts: bool, optional
            If set to true, `hamiltonian` returns [hamiltonian, evals, evecs, g_coupling_matrix]

        Returns
        -------
        scipy.sparse.csc_matrix or list
        """
        zeropi_dim = self.zeropi_cutoff
        zeropi_evals, zeropi_evecs = self._zeropi.eigensys(
            evals_count=zeropi_dim)
        zeropi_diag_hamiltonian = sparse.dia_matrix((zeropi_dim, zeropi_dim),
                                                    dtype=np.complex_)
        zeropi_diag_hamiltonian.setdiag(zeropi_evals)

        zeta_dim = self.zeta_cutoff
        prefactor = self.omega_zeta()
        zeta_diag_hamiltonian = op.number_sparse(zeta_dim, prefactor)

        hamiltonian_mat = sparse.kron(
            zeropi_diag_hamiltonian,
            sparse.identity(zeta_dim, format='dia', dtype=np.complex_))
        hamiltonian_mat += sparse.kron(
            sparse.identity(zeropi_dim, format='dia', dtype=np.complex_),
            zeta_diag_hamiltonian)

        gmat = self.g_coupling_matrix(zeropi_evecs)
        zeropi_coupling = sparse.dia_matrix((zeropi_dim, zeropi_dim),
                                            dtype=np.complex_)
        for l1 in range(zeropi_dim):
            for l2 in range(zeropi_dim):
                zeropi_coupling += gmat[l1, l2] * op.hubbard_sparse(
                    l1, l2, zeropi_dim)
        hamiltonian_mat += sparse.kron(
            zeropi_coupling,
            op.annihilation_sparse(zeta_dim) + op.creation_sparse(zeta_dim))

        if return_parts:
            return [hamiltonian_mat.tocsc(), zeropi_evals, zeropi_evecs, gmat]

        return hamiltonian_mat.tocsc()