Exemple #1
0
def beep(duration=.5, frequency1=None, frequency2=None):
    if type(duration) in [tuple, list]:
        frequency2 = frequency1
        frequency1 = duration
        duration =.5
    if frequency1 == None:
        frequency1 = random.randrange(200, 10000)
    if type(frequency1) in [tuple, list]:
        if frequency2 == None:
            frequency2 = [None for i in range(len(frequency1))]
        for (f1, f2) in zip(frequency1, frequency2):
            if myro.globvars.robot:
                scribbler.Scribbler().beep(duration, f1, f2)
            # else:
                # computer.beep(duration, f1, f2)
    else:
        if scribbler.Scribbler():
            scribbler.Scribbler().beep(duration, frequency1, frequency2)
If you use this tool for your own dataset, you *must* double check this pixel scale is correct!
"""
pixel_scales = 0.1

"""
First, load the `Imaging` dataset, so that the location of galaxies is clear when scaling the noise-map.
"""
image = al.Array2D.from_fits(
    file_path=path.join(dataset_path, "image.fits"), pixel_scales=pixel_scales
)

cmap = aplt.Cmap(
    norm="log", vmin=1.0e-4, vmax=0.4 * np.max(image), linthresh=0.05, linscale=0.1
)

scribbler = scribbler.Scribbler(image=image.native, cmap=cmap)
mask = scribbler.show_mask()
mask = al.Mask2D.manual(mask=mask, pixel_scales=pixel_scales)

"""
Here, we change the image flux values to zeros. If included, we add some random Gaussian noise to most close resemble
noise in the image.
"""
background_level = al.preprocess.background_noise_map_from_edges_of_image(
    image=image, no_edges=2
)[0]

# gaussian_sigma = None
gaussian_sigma = 0.1

image = np.where(mask, 0.0, image.native)
Exemple #3
0
def test():
	print "Funciona la importacion"
	#return scribbler.Scribbler()
	return scribbler.Scribbler().env()
Exemple #4
0
def getBattery():
	return scribbler.Scribbler().getBattery()
Exemple #5
0
def setLEDBack(value):
	return scribbler.Scribbler().setLEDBack(value)
Exemple #6
0
def setLEDFront(value):
	return scribbler.Scribbler().setLEDFront(value)
Exemple #7
0
def setLED(position, value):
	return scribbler.Scribbler().set("led", position, value)
Exemple #8
0
def move(translate,rotate):
	return scribbler.Scribbler().move(translate,rotate)
Exemple #9
0
def motors(left,right):
	return scribbler.Scribbler().motors(left,right)
"""
dataset_name = "mass_sie__source_sersic"
dataset_path = path.join("dataset", "imaging", "no_lens_light", dataset_name)
"""
If you use this tool for your own dataset, you *must* double check this pixel scale is correct!
"""
pixel_scales = 0.1
"""
First, load the `Imaging` dataset, so that the mask can be plotted over the strong lens image.
"""
image = al.Array2D.from_fits(file_path=path.join(dataset_path, "image.fits"),
                             pixel_scales=pixel_scales)
"""
Load the GUI for drawing the mask. Push Esc when you are finished drawing the mask.
"""
scribbler = scribbler.Scribbler(image=image.native)
mask = scribbler.show_mask()
mask = al.Mask2D.manual(mask=np.invert(mask), pixel_scales=pixel_scales)
"""
Now lets plot the image and mask, so we can check that the mask includes the regions of the image we want.
"""
visuals_2d = aplt.Visuals2D(mask=mask)
array_2d_plotter = aplt.Array2DPlotter(array=image, visuals_2d=visuals_2d)
array_2d_plotter.figure_2d()
"""
Now we`re happy with the mask, lets output it to the dataset folder of the lens, so that we can load it from a .fits
file in our pipelines!
"""
mask.output_to_fits(file_path=path.join(dataset_path, "mask.fits"),
                    overwrite=True)
Exemple #11
0
    'a': 440,
    'cH': 523,
    'eH': 659,
    'fH': 698
}

part1 = [[500, notes['a']], [500, notes['a']], [500, notes['a']],
         [350, notes['f']], [150, notes['cH']], [500, notes['a']],
         [350, notes['f']], [150, notes['cH']], [650, notes['a']]]

part2 = [[500, notes['eH']], [500, notes['eH']], [500, notes['eH']],
         [350, notes['fH']], [150, notes['cH']], [500, notes['gS']],
         [350, notes['f']], [150, notes['cH']], [650, notes['a']]]

if __name__ == '__main__':
    sc = s.Scribbler(DEVICE)
    ids = None

    # drive slowly forward
    sc.set_motors(-0.1, -0.1)

    # loop until a marker is detected
    while ids == None:
        jpeg = sc.capture_jpeg_data(True, s.JPEG_FAST)
        ids = detect_markers(jpeg_to_mat(jpeg))
    first_marker = ids.flat[0]
    print('I found marker #%d' % first_marker)

    # stop the robot
    sc.set_motors(0, 0)