def trigger_https_tests(): """ Return exit code of newman execution of https collection """ ts.start_torchserve(ncs=True, model_store=MODEL_STORE_DIR, config_file=TS_CONFIG_FILE_HTTPS, log_file=TS_CONSOLE_LOG_FILE) EXIT_CODE = os.system(f"newman run --insecure -e {POSTMAN_ENV_FILE} {POSTMAN_COLLECTION_HTTPS} -r cli,html --reporter-html-export {ARTIFACTS_HTTPS_DIR}/{REPORT_FILE} --verbose") ts.stop_torchserve() move_logs(TS_CONSOLE_LOG_FILE, ARTIFACTS_HTTPS_DIR) cleanup_model_store() return EXIT_CODE
def trigger_inference_tests(): """ Return exit code of newman execution of inference collection """ ts.start_torchserve(ncs=True, model_store=MODEL_STORE_DIR, log_file=TS_CONSOLE_LOG_FILE) EXIT_CODE = os.system(f"newman run -e {POSTMAN_ENV_FILE} {POSTMAN_COLLECTION_INFERENCE} -d {POSTMAN_INFERENCE_DATA_FILE} -r cli,html --reporter-html-export {ARTIFACTS_INFERENCE_DIR}/{REPORT_FILE} --verbose") ts.stop_torchserve() move_logs(TS_CONSOLE_LOG_FILE, ARTIFACTS_INFERENCE_DIR) cleanup_model_store() return EXIT_CODE
def cleanup(): ts.stop_torchserve() rm_dir('model_store') rm_dir('logs') # clean up residual from model-archiver IT suite. rm_dir( 'model-archiver/model_archiver/htmlcov_ut model_archiver/model-archiver/htmlcov_it' )
def trigger_incr_timeout_inference_tests(): """ Return exit code of newman execution of increased timeout inference collection """ # Configuration with increased timeout config_file = open("config.properties", "w") config_file.write("default_response_timeout=300") config_file.close() ts.start_torchserve(ncs=True, model_store=MODEL_STORE_DIR, config_file="config.properties", log_file=TS_CONSOLE_LOG_FILE) EXIT_CODE = os.system(f"newman run -e {POSTMAN_ENV_FILE} {POSTMAN_COLLECTION_INFERENCE} -d {POSTMAN_INCRSD_TIMEOUT_INFERENCE_DATA_FILE} -r cli,html --reporter-html-export {ARTIFACTS_INCRSD_TIMEOUT_INFERENCE_DIR}/{REPORT_FILE} --verbose") ts.stop_torchserve() move_logs(TS_CONSOLE_LOG_FILE, ARTIFACTS_INCRSD_TIMEOUT_INFERENCE_DIR) cleanup_model_store() os.remove("config.properties") return EXIT_CODE
def test_sanity(): print("## Started sanity tests") resnet18_model = {"name": "resnet-18", "inputs": ["examples/image_classifier/kitten.jpg"], "handler": "image_classifier"} models_to_validate = [ {"name": "fastrcnn", "inputs": ["examples/object_detector/persons.jpg"], "handler": "object_detector"}, {"name": "fcn_resnet_101", "inputs": ["docs/images/blank_image.jpg", "examples/image_segmenter/fcn/persons.jpg"], "handler": "image_segmenter"}, {"name": "my_text_classifier_v2", "inputs": ["examples/text_classification/sample_text.txt"], "handler": "text_classification"}, resnet18_model, {"name": "my_text_classifier_scripted_v2", "inputs": ["examples/text_classification/sample_text.txt"], "handler": "text_classification"}, {"name": "alexnet_scripted", "inputs": ["examples/image_classifier/kitten.jpg"], "handler": "image_classifier"}, {"name": "fcn_resnet_101_scripted", "inputs": ["examples/image_segmenter/fcn/persons.jpg"], "handler": "image_segmenter"}, {"name": "roberta_qa_no_torchscript", "inputs": ["examples/Huggingface_Transformers/QA_artifacts/sample_text.txt"], "handler": "custom"}, {"name": "bert_token_classification_no_torchscript", "inputs": ["examples/Huggingface_Transformers/Token_classification_artifacts/sample_text.txt"], "handler": "custom"}, {"name": "bert_seqc_without_torchscript", "inputs": ["examples/Huggingface_Transformers/Seq_classification_artifacts/sample_text.txt"], "handler": "custom"} ] ts_log_file = os.path.join("logs", "ts_console.log") is_gpu_instance = ts.is_gpu_instance() os.makedirs("model_store", exist_ok=True) os.makedirs("logs", exist_ok=True) if is_gpu_instance: import torch if not torch.cuda.is_available(): sys.exit("## Ohh its NOT running on GPU !") started = ts.start_torchserve(log_file=ts_log_file) if not started: sys.exit(1) for model in models_to_validate: model_name = model["name"] model_inputs = model["inputs"] model_handler = model["handler"] response = ts.register_model(model_name) if response and response.status_code == 200: print(f"## Successfully registered {model_name} model with torchserve") else: print("## Failed to register model with torchserve") sys.exit(1) # For each input execute inference n=4 times for input in model_inputs: for i in range(4): response = ts.run_inference(model_name, input) if response and response.status_code == 200: print(f"## Successfully ran inference on {model_name} model.") else: print(f"## Failed to run inference on {model_name} model") sys.exit(1) if is_gpu_instance: if validate_model_on_gpu(): print(f"## Model {model_name} successfully loaded on GPU") else: sys.exit(f"## Something went wrong, model {model_name} did not load on GPU!!") # skip unregistering resnet-18 model to test snapshot feature with restart if model != resnet18_model: response = ts.unregister_model(model_name) if response and response.status_code == 200: print(f"## Successfully unregistered {model_name}") else: print(f"## Failed to unregister {model_name}") sys.exit(1) print(f"## {model_handler} handler is stable.") stopped = ts.stop_torchserve() if not stopped: sys.exit(1) # Restarting torchserve # This should restart with the generated snapshot and resnet-18 model should be automatically registered started = ts.start_torchserve(log_file=ts_log_file) if not started: sys.exit(1) response = ts.run_inference(resnet18_model["name"], resnet18_model["inputs"][0]) if response and response.status_code == 200: print(f"## Successfully ran inference on {model_name} model.") else: print(f"## Failed to run inference on {model_name} model") sys.exit(1) stopped = ts.stop_torchserve() if not stopped: sys.exit(1)