Exemple #1
0
def main(args=None):

    # initializations
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_data = arguments['-i']
    fname_seg = arguments['-s']
    if '-l' in arguments:
        fname_landmarks = arguments['-l']
        label_type = 'body'
    elif '-ldisc' in arguments:
        fname_landmarks = arguments['-ldisc']
        label_type = 'disc'
    else:
        sct.printv('ERROR: Labels should be provided.', 1, 'error')
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = ''
    path_template = sct.slash_at_the_end(arguments['-t'], 1)
    contrast_template = arguments['-c']
    ref = arguments['-ref']
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])
    param.verbose = verbose  # TODO: not clean, unify verbose or param.verbose in code, but not both
    if '-param-straighten' in arguments:
        param.param_straighten = arguments['-param-straighten']
    # if '-cpu-nb' in arguments:
    #     arg_cpu = ' -cpu-nb '+str(arguments['-cpu-nb'])
    # else:
    #     arg_cpu = ''
    # registration parameters
    if '-param' in arguments:
        # reset parameters but keep step=0 (might be overwritten if user specified step=0)
        paramreg = ParamregMultiStep([step0])
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'
        # add user parameters
        for paramStep in arguments['-param']:
            paramreg.addStep(paramStep)
    else:
        paramreg = ParamregMultiStep([step0, step1, step2])
        # if ref=subject, initialize registration using different affine parameters
        if ref == 'subject':
            paramreg.steps['0'].dof = 'Tx_Ty_Tz_Rx_Ry_Rz_Sz'

    # initialize other parameters
    # file_template_label = param.file_template_label
    zsubsample = param.zsubsample
    # smoothing_sigma = param.smoothing_sigma

    # retrieve template file names
    from sct_warp_template import get_file_label
    file_template_vertebral_labeling = get_file_label(
        path_template + 'template/', 'vertebral')
    file_template = get_file_label(path_template + 'template/',
                                   contrast_template.upper() + '-weighted')
    file_template_seg = get_file_label(path_template + 'template/',
                                       'spinal cord')

    # start timer
    start_time = time.time()

    # get fname of the template + template objects
    fname_template = path_template + 'template/' + file_template
    fname_template_vertebral_labeling = path_template + 'template/' + file_template_vertebral_labeling
    fname_template_seg = path_template + 'template/' + file_template_seg
    fname_template_disc_labeling = path_template + 'template/' + 'PAM50_label_disc.nii.gz'

    # check file existence
    # TODO: no need to do that!
    sct.printv('\nCheck template files...')
    sct.check_file_exist(fname_template, verbose)
    sct.check_file_exist(fname_template_vertebral_labeling, verbose)
    sct.check_file_exist(fname_template_seg, verbose)
    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    # sct.printv(arguments)
    sct.printv('\nCheck parameters:', verbose)
    sct.printv('  Data:                 ' + fname_data, verbose)
    sct.printv('  Landmarks:            ' + fname_landmarks, verbose)
    sct.printv('  Segmentation:         ' + fname_seg, verbose)
    sct.printv('  Path template:        ' + path_template, verbose)
    sct.printv('  Remove temp files:    ' + str(remove_temp_files), verbose)

    # create QC folder
    sct.create_folder(param.path_qc)

    # check if data, segmentation and landmarks are in the same space
    # JULIEN 2017-04-25: removed because of issue #1168
    # sct.printv('\nCheck if data, segmentation and landmarks are in the same space...')
    # if not sct.check_if_same_space(fname_data, fname_seg):
    #     sct.printv('ERROR: Data image and segmentation are not in the same space. Please check space and orientation of your files', verbose, 'error')
    # if not sct.check_if_same_space(fname_data, fname_landmarks):
    #     sct.printv('ERROR: Data image and landmarks are not in the same space. Please check space and orientation of your files', verbose, 'error')

    # check input labels
    labels = check_labels(fname_landmarks, label_type=label_type)

    # create temporary folder
    path_tmp = sct.tmp_create(verbose=verbose)

    # set temporary file names
    ftmp_data = 'data.nii'
    ftmp_seg = 'seg.nii.gz'
    ftmp_label = 'label.nii.gz'
    ftmp_template = 'template.nii'
    ftmp_template_seg = 'template_seg.nii.gz'
    ftmp_template_label = 'template_label.nii.gz'
    # ftmp_template_label_disc = 'template_label_disc.nii.gz'

    # copy files to temporary folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               verbose)
    sct.run('sct_convert -i ' + fname_data + ' -o ' + path_tmp + ftmp_data)
    sct.run('sct_convert -i ' + fname_seg + ' -o ' + path_tmp + ftmp_seg)
    sct.run('sct_convert -i ' + fname_landmarks + ' -o ' + path_tmp +
            ftmp_label)
    sct.run('sct_convert -i ' + fname_template + ' -o ' + path_tmp +
            ftmp_template)
    sct.run('sct_convert -i ' + fname_template_seg + ' -o ' + path_tmp +
            ftmp_template_seg)
    if label_type == 'disc':
        sct_convert.main(args=[
            '-i', fname_template_disc_labeling, '-o', path_tmp +
            ftmp_template_label
        ])
    # sct.run('sct_convert -i '+fname_template_label+' -o '+path_tmp+ftmp_template_label)

    # go to tmp folder
    os.chdir(path_tmp)

    # Generate labels from template vertebral labeling
    if label_type == 'body':
        sct.printv('\nGenerate labels from template vertebral labeling',
                   verbose)
        sct_label_utils.main(args=[
            '-i', fname_template_vertebral_labeling, '-vert-body', '0', '-o',
            ftmp_template_label
        ])
    # sct.run('sct_label_utils -i ' + fname_template_vertebral_labeling + ' -vert-body 0 -o ' + ftmp_template_label)

    # check if provided labels are available in the template
    sct.printv('\nCheck if provided labels are available in the template',
               verbose)
    image_label_template = Image(ftmp_template_label)
    labels_template = image_label_template.getNonZeroCoordinates(
        sorting='value')
    if labels[-1].value > labels_template[-1].value:
        sct.printv(
            'ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max '
            'provided: ' + str(labels[-1].value) +
            '\nLabel max from template: ' + str(labels_template[-1].value),
            verbose, 'error')

    # if only one label is present, force affine transformation to be Tx,Ty,Tz only (no scaling)
    if len(labels) == 1:
        paramreg.steps['0'].dof = 'Tx_Ty_Tz'
        sct.printv(
            'WARNING: Only one label is present. Forcing initial transformation to: '
            + paramreg.steps['0'].dof, 1, 'warning')

    # binarize segmentation (in case it has values below 0 caused by manual editing)
    sct.printv('\nBinarize segmentation', verbose)
    sct.run('sct_maths -i seg.nii.gz -bin 0.5 -o seg.nii.gz')

    # smooth segmentation (jcohenadad, issue #613)
    # sct.printv('\nSmooth segmentation...', verbose)
    # sct.run('sct_maths -i '+ftmp_seg+' -smooth 1.5 -o '+add_suffix(ftmp_seg, '_smooth'))
    # jcohenadad: updated 2016-06-16: DO NOT smooth the seg anymore. Issue #
    # sct.run('sct_maths -i '+ftmp_seg+' -smooth 0 -o '+add_suffix(ftmp_seg, '_smooth'))
    # ftmp_seg = add_suffix(ftmp_seg, '_smooth')

    # Switch between modes: subject->template or template->subject
    if ref == 'template':

        # resample data to 1mm isotropic
        sct.printv('\nResample data to 1mm isotropic...', verbose)
        sct.run('sct_resample -i ' + ftmp_data +
                ' -mm 1.0x1.0x1.0 -x linear -o ' +
                add_suffix(ftmp_data, '_1mm'))
        ftmp_data = add_suffix(ftmp_data, '_1mm')
        sct.run('sct_resample -i ' + ftmp_seg +
                ' -mm 1.0x1.0x1.0 -x linear -o ' +
                add_suffix(ftmp_seg, '_1mm'))
        ftmp_seg = add_suffix(ftmp_seg, '_1mm')
        # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling with neighrest neighbour can make them disappear. Therefore a more clever approach is required.
        resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm'))
        ftmp_label = add_suffix(ftmp_label, '_1mm')

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)
        sct.run('sct_image -i ' + ftmp_data + ' -setorient RPI -o ' +
                add_suffix(ftmp_data, '_rpi'))
        ftmp_data = add_suffix(ftmp_data, '_rpi')
        sct.run('sct_image -i ' + ftmp_seg + ' -setorient RPI -o ' +
                add_suffix(ftmp_seg, '_rpi'))
        ftmp_seg = add_suffix(ftmp_seg, '_rpi')
        sct.run('sct_image -i ' + ftmp_label + ' -setorient RPI -o ' +
                add_suffix(ftmp_label, '_rpi'))
        ftmp_label = add_suffix(ftmp_label, '_rpi')

        # get landmarks in native space
        # crop segmentation
        # output: segmentation_rpi_crop.nii.gz
        status_crop, output_crop = sct.run(
            'sct_crop_image -i ' + ftmp_seg + ' -o ' +
            add_suffix(ftmp_seg, '_crop') + ' -dim 2 -bzmax', verbose)
        ftmp_seg = add_suffix(ftmp_seg, '_crop')
        cropping_slices = output_crop.split('Dimension 2: ')[1].split(
            '\n')[0].split(' ')

        # straighten segmentation
        sct.printv(
            '\nStraighten the spinal cord using centerline/segmentation...',
            verbose)
        # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
        if os.path.isfile('../warp_curve2straight.nii.gz') and os.path.isfile(
                '../warp_straight2curve.nii.gz') and os.path.isfile(
                    '../straight_ref.nii.gz'):
            # if they exist, copy them into current folder
            sct.printv(
                'WARNING: Straightening was already run previously. Copying warping fields...',
                verbose, 'warning')
            shutil.copy('../warp_curve2straight.nii.gz',
                        'warp_curve2straight.nii.gz')
            shutil.copy('../warp_straight2curve.nii.gz',
                        'warp_straight2curve.nii.gz')
            shutil.copy('../straight_ref.nii.gz', 'straight_ref.nii.gz')
            # apply straightening
            sct.run(
                'sct_apply_transfo -i ' + ftmp_seg +
                ' -w warp_curve2straight.nii.gz -d straight_ref.nii.gz -o ' +
                add_suffix(ftmp_seg, '_straight'))
        else:
            import sct_straighten_spinalcord
            if __name__ == '__main__':
                sct_straighten_spinalcord.main(args=[
                    '-i', ftmp_seg, '-s', ftmp_seg, '-o',
                    add_suffix(ftmp_seg, '_straight'), '-qc', '0', '-r', '0',
                    '-v',
                    str(verbose), '-param', 'template_orientation=1'
                ])
        # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER
        # re-define warping field using non-cropped space (to avoid issue #367)
        sct.run('sct_concat_transfo -w warp_straight2curve.nii.gz -d ' +
                ftmp_data + ' -o warp_straight2curve.nii.gz')

        # Label preparation:
        # --------------------------------------------------------------------------------
        # Remove unused label on template. Keep only label present in the input label image
        sct.printv(
            '\nRemove unused label on template. Keep only label present in the input label image...',
            verbose)
        sct.run('sct_label_utils -i ' + ftmp_template_label + ' -o ' +
                ftmp_template_label + ' -remove ' + ftmp_label)

        # Dilating the input label so they can be straighten without losing them
        sct.printv('\nDilating input labels using 3vox ball radius')
        sct.run('sct_maths -i ' + ftmp_label + ' -o ' +
                add_suffix(ftmp_label, '_dilate') + ' -dilate 3')
        ftmp_label = add_suffix(ftmp_label, '_dilate')

        # Apply straightening to labels
        sct.printv('\nApply straightening to labels...', verbose)
        sct.run('sct_apply_transfo -i ' + ftmp_label + ' -o ' +
                add_suffix(ftmp_label, '_straight') + ' -d ' +
                add_suffix(ftmp_seg, '_straight') +
                ' -w warp_curve2straight.nii.gz -x nn')
        ftmp_label = add_suffix(ftmp_label, '_straight')

        # Compute rigid transformation straight landmarks --> template landmarks
        sct.printv('\nEstimate transformation for step #0...', verbose)
        from msct_register_landmarks import register_landmarks
        try:
            register_landmarks(ftmp_label,
                               ftmp_template_label,
                               paramreg.steps['0'].dof,
                               fname_affine='straight2templateAffine.txt',
                               verbose=verbose)
        except Exception:
            sct.printv(
                'ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://sourceforge.net/p/spinalcordtoolbox/wiki/create_labels/',
                verbose=verbose,
                type='error')

        # Concatenate transformations: curve --> straight --> affine
        sct.printv(
            '\nConcatenate transformations: curve --> straight --> affine...',
            verbose)
        sct.run(
            'sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt -d template.nii -o warp_curve2straightAffine.nii.gz'
        )

        # Apply transformation
        sct.printv('\nApply transformation...', verbose)
        sct.run('sct_apply_transfo -i ' + ftmp_data + ' -o ' +
                add_suffix(ftmp_data, '_straightAffine') + ' -d ' +
                ftmp_template + ' -w warp_curve2straightAffine.nii.gz')
        ftmp_data = add_suffix(ftmp_data, '_straightAffine')
        sct.run('sct_apply_transfo -i ' + ftmp_seg + ' -o ' +
                add_suffix(ftmp_seg, '_straightAffine') + ' -d ' +
                ftmp_template +
                ' -w warp_curve2straightAffine.nii.gz -x linear')
        ftmp_seg = add_suffix(ftmp_seg, '_straightAffine')
        """
        # Benjamin: Issue from Allan Martin, about the z=0 slice that is screwed up, caused by the affine transform.
        # Solution found: remove slices below and above landmarks to avoid rotation effects
        points_straight = []
        for coord in landmark_template:
            points_straight.append(coord.z)
        min_point, max_point = int(round(np.min(points_straight))), int(round(np.max(points_straight)))
        sct.run('sct_crop_image -i ' + ftmp_seg + ' -start ' + str(min_point) + ' -end ' + str(max_point) + ' -dim 2 -b 0 -o ' + add_suffix(ftmp_seg, '_black'))
        ftmp_seg = add_suffix(ftmp_seg, '_black')
        """

        # binarize
        sct.printv('\nBinarize segmentation...', verbose)
        sct.run('sct_maths -i ' + ftmp_seg + ' -bin 0.5 -o ' +
                add_suffix(ftmp_seg, '_bin'))
        ftmp_seg = add_suffix(ftmp_seg, '_bin')

        # find min-max of anat2template (for subsequent cropping)
        zmin_template, zmax_template = find_zmin_zmax(ftmp_seg)

        # crop template in z-direction (for faster processing)
        sct.printv('\nCrop data in template space (for faster processing)...',
                   verbose)
        sct.run('sct_crop_image -i ' + ftmp_template + ' -o ' +
                add_suffix(ftmp_template, '_crop') + ' -dim 2 -start ' +
                str(zmin_template) + ' -end ' + str(zmax_template))
        ftmp_template = add_suffix(ftmp_template, '_crop')
        sct.run('sct_crop_image -i ' + ftmp_template_seg + ' -o ' +
                add_suffix(ftmp_template_seg, '_crop') + ' -dim 2 -start ' +
                str(zmin_template) + ' -end ' + str(zmax_template))
        ftmp_template_seg = add_suffix(ftmp_template_seg, '_crop')
        sct.run('sct_crop_image -i ' + ftmp_data + ' -o ' +
                add_suffix(ftmp_data, '_crop') + ' -dim 2 -start ' +
                str(zmin_template) + ' -end ' + str(zmax_template))
        ftmp_data = add_suffix(ftmp_data, '_crop')
        sct.run('sct_crop_image -i ' + ftmp_seg + ' -o ' +
                add_suffix(ftmp_seg, '_crop') + ' -dim 2 -start ' +
                str(zmin_template) + ' -end ' + str(zmax_template))
        ftmp_seg = add_suffix(ftmp_seg, '_crop')

        # sub-sample in z-direction
        sct.printv('\nSub-sample in z-direction (for faster processing)...',
                   verbose)
        sct.run(
            'sct_resample -i ' + ftmp_template + ' -o ' +
            add_suffix(ftmp_template, '_sub') + ' -f 1x1x' + zsubsample,
            verbose)
        ftmp_template = add_suffix(ftmp_template, '_sub')
        sct.run(
            'sct_resample -i ' + ftmp_template_seg + ' -o ' +
            add_suffix(ftmp_template_seg, '_sub') + ' -f 1x1x' + zsubsample,
            verbose)
        ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub')
        sct.run(
            'sct_resample -i ' + ftmp_data + ' -o ' +
            add_suffix(ftmp_data, '_sub') + ' -f 1x1x' + zsubsample, verbose)
        ftmp_data = add_suffix(ftmp_data, '_sub')
        sct.run(
            'sct_resample -i ' + ftmp_seg + ' -o ' +
            add_suffix(ftmp_seg, '_sub') + ' -f 1x1x' + zsubsample, verbose)
        ftmp_seg = add_suffix(ftmp_seg, '_sub')

        # Registration straight spinal cord to template
        sct.printv('\nRegister straight spinal cord to template...', verbose)

        # loop across registration steps
        warp_forward = []
        warp_inverse = []
        for i_step in range(1, len(paramreg.steps)):
            sct.printv(
                '\nEstimate transformation for step #' + str(i_step) + '...',
                verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_data
                dest = ftmp_template
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_seg
                dest = ftmp_template_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')
            # if step>1, apply warp_forward_concat to the src image to be used
            if i_step > 1:
                # sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+sct.add_suffix(src, '_reg')+' -x '+interp_step, verbose)
                # apply transformation from previous step, to use as new src for registration
                sct.run(
                    'sct_apply_transfo -i ' + src + ' -d ' + dest + ' -w ' +
                    ','.join(warp_forward) + ' -o ' +
                    add_suffix(src, '_regStep' + str(i_step - 1)) + ' -x ' +
                    interp_step, verbose)
                src = add_suffix(src, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            warp_forward_out, warp_inverse_out = register(
                src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.append(warp_inverse_out)

        # Concatenate transformations:
        sct.printv('\nConcatenate transformations: anat --> template...',
                   verbose)
        sct.run(
            'sct_concat_transfo -w warp_curve2straightAffine.nii.gz,' +
            ','.join(warp_forward) +
            ' -d template.nii -o warp_anat2template.nii.gz', verbose)
        # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
        sct.printv('\nConcatenate transformations: template --> anat...',
                   verbose)
        warp_inverse.reverse()
        sct.run(
            'sct_concat_transfo -w ' + ','.join(warp_inverse) +
            ',-straight2templateAffine.txt,warp_straight2curve.nii.gz -d data.nii -o warp_template2anat.nii.gz',
            verbose)

    # register template->subject
    elif ref == 'subject':

        # Change orientation of input images to RPI
        sct.printv('\nChange orientation of input images to RPI...', verbose)
        sct.run('sct_image -i ' + ftmp_data + ' -setorient RPI -o ' +
                add_suffix(ftmp_data, '_rpi'))
        ftmp_data = add_suffix(ftmp_data, '_rpi')
        sct.run('sct_image -i ' + ftmp_seg + ' -setorient RPI -o ' +
                add_suffix(ftmp_seg, '_rpi'))
        ftmp_seg = add_suffix(ftmp_seg, '_rpi')
        sct.run('sct_image -i ' + ftmp_label + ' -setorient RPI -o ' +
                add_suffix(ftmp_label, '_rpi'))
        ftmp_label = add_suffix(ftmp_label, '_rpi')

        # Remove unused label on template. Keep only label present in the input label image
        sct.printv(
            '\nRemove unused label on template. Keep only label present in the input label image...',
            verbose)
        sct.run('sct_label_utils -i ' + ftmp_template_label + ' -o ' +
                ftmp_template_label + ' -remove ' + ftmp_label)

        # Add one label because at least 3 orthogonal labels are required to estimate an affine transformation. This new label is added at the level of the upper most label (lowest value), at 1cm to the right.
        for i_file in [ftmp_label, ftmp_template_label]:
            im_label = Image(i_file)
            coord_label = im_label.getCoordinatesAveragedByValue(
            )  # N.B. landmarks are sorted by value
            # Create new label
            from copy import deepcopy
            new_label = deepcopy(coord_label[0])
            # move it 5mm to the left (orientation is RAS)
            nx, ny, nz, nt, px, py, pz, pt = im_label.dim
            new_label.x = round(coord_label[0].x + 5.0 / px)
            # assign value 99
            new_label.value = 99
            # Add to existing image
            im_label.data[int(new_label.x),
                          int(new_label.y),
                          int(new_label.z)] = new_label.value
            # Overwrite label file
            # im_label.setFileName('label_rpi_modif.nii.gz')
            im_label.save()

        # Bring template to subject space using landmark-based transformation
        sct.printv('\nEstimate transformation for step #0...', verbose)
        from msct_register_landmarks import register_landmarks
        warp_forward = ['template2subjectAffine.txt']
        warp_inverse = ['-template2subjectAffine.txt']
        try:
            register_landmarks(ftmp_template_label,
                               ftmp_label,
                               paramreg.steps['0'].dof,
                               fname_affine=warp_forward[0],
                               verbose=verbose,
                               path_qc=param.path_qc)
        except Exception:
            sct.printv(
                'ERROR: input labels do not seem to be at the right place. Please check the position of the labels. See documentation for more details: https://sourceforge.net/p/spinalcordtoolbox/wiki/create_labels/',
                verbose=verbose,
                type='error')

        # loop across registration steps
        for i_step in range(1, len(paramreg.steps)):
            sct.printv(
                '\nEstimate transformation for step #' + str(i_step) + '...',
                verbose)
            # identify which is the src and dest
            if paramreg.steps[str(i_step)].type == 'im':
                src = ftmp_template
                dest = ftmp_data
                interp_step = 'linear'
            elif paramreg.steps[str(i_step)].type == 'seg':
                src = ftmp_template_seg
                dest = ftmp_seg
                interp_step = 'nn'
            else:
                sct.printv('ERROR: Wrong image type.', 1, 'error')
            # apply transformation from previous step, to use as new src for registration
            sct.run(
                'sct_apply_transfo -i ' + src + ' -d ' + dest + ' -w ' +
                ','.join(warp_forward) + ' -o ' +
                add_suffix(src, '_regStep' + str(i_step - 1)) + ' -x ' +
                interp_step, verbose)
            src = add_suffix(src, '_regStep' + str(i_step - 1))
            # register src --> dest
            # TODO: display param for debugging
            warp_forward_out, warp_inverse_out = register(
                src, dest, paramreg, param, str(i_step))
            warp_forward.append(warp_forward_out)
            warp_inverse.insert(0, warp_inverse_out)

        # Concatenate transformations:
        sct.printv('\nConcatenate transformations: template --> subject...',
                   verbose)
        sct.run(
            'sct_concat_transfo -w ' + ','.join(warp_forward) +
            ' -d data.nii -o warp_template2anat.nii.gz', verbose)
        sct.printv('\nConcatenate transformations: subject --> template...',
                   verbose)
        sct.run(
            'sct_concat_transfo -w ' + ','.join(warp_inverse) +
            ' -d template.nii -o warp_anat2template.nii.gz', verbose)

    # Apply warping fields to anat and template
    sct.run(
        'sct_apply_transfo -i template.nii -o template2anat.nii.gz -d data.nii -w warp_template2anat.nii.gz -crop 1',
        verbose)
    sct.run(
        'sct_apply_transfo -i data.nii -o anat2template.nii.gz -d template.nii -w warp_anat2template.nii.gz -crop 1',
        verbose)

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(path_tmp + 'warp_template2anat.nii.gz',
                             path_output + 'warp_template2anat.nii.gz',
                             verbose)
    sct.generate_output_file(path_tmp + 'warp_anat2template.nii.gz',
                             path_output + 'warp_anat2template.nii.gz',
                             verbose)
    sct.generate_output_file(path_tmp + 'template2anat.nii.gz',
                             path_output + 'template2anat' + ext_data, verbose)
    sct.generate_output_file(path_tmp + 'anat2template.nii.gz',
                             path_output + 'anat2template' + ext_data, verbose)
    if ref == 'template':
        # copy straightening files in case subsequent SCT functions need them
        sct.generate_output_file(path_tmp + 'warp_curve2straight.nii.gz',
                                 path_output + 'warp_curve2straight.nii.gz',
                                 verbose)
        sct.generate_output_file(path_tmp + 'warp_straight2curve.nii.gz',
                                 path_output + 'warp_straight2curve.nii.gz',
                                 verbose)
        sct.generate_output_file(path_tmp + 'straight_ref.nii.gz',
                                 path_output + 'straight_ref.nii.gz', verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nDelete temporary files...', verbose)
        sct.run('rm -rf ' + path_tmp)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv(
        '\nFinished! Elapsed time: ' + str(int(round(elapsed_time))) + 's',
        verbose)

    if '-qc' in arguments and not arguments.get('-noqc', False):
        qc_path = arguments['-qc']

        import spinalcordtoolbox.reports.qc as qc
        import spinalcordtoolbox.reports.slice as qcslice

        qc_param = qc.Params(fname_data, 'sct_register_to_template', args,
                             'Sagittal', qc_path)
        report = qc.QcReport(qc_param, '')

        @qc.QcImage(report, 'none', [qc.QcImage.no_seg_seg])
        def test(qslice):
            return qslice.single()

        fname_template2anat = path_output + 'template2anat' + ext_data
        test(
            qcslice.SagittalTemplate2Anat(Image(fname_data),
                                          Image(fname_template2anat),
                                          Image(fname_seg)))
        sct.printv('Sucessfully generate the QC results in %s' %
                   qc_param.qc_results)
        sct.printv('Use the following command to see the results in a browser')
        sct.printv('sct_qc -folder %s' % qc_path, type='info')

    # to view results
    sct.printv('\nTo view results, type:', verbose)
    sct.printv(
        'fslview ' + fname_data + ' ' + path_output +
        'template2anat -b 0,4000 &', verbose, 'info')
    sct.printv(
        'fslview ' + fname_template + ' -b 0,5000 ' + path_output +
        'anat2template &\n', verbose, 'info')
Exemple #2
0
def main(args=None):

    # initializations
    initz = ''
    initcenter = ''
    fname_initlabel = ''
    file_labelz = 'labelz.nii.gz'
    param = Param()

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_in = os.path.abspath(arguments["-i"])
    fname_seg = os.path.abspath(arguments['-s'])
    contrast = arguments['-c']
    path_template = os.path.abspath(arguments['-t'])
    scale_dist = arguments['-scale-dist']
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = os.curdir
    param.path_qc = arguments.get("-qc", None)
    if '-discfile' in arguments:
        fname_disc = os.path.abspath(arguments['-discfile'])
    else:
        fname_disc = None
    if '-initz' in arguments:
        initz = arguments['-initz']
    if '-initcenter' in arguments:
        initcenter = arguments['-initcenter']
    # if user provided text file, parse and overwrite arguments
    if '-initfile' in arguments:
        file = open(arguments['-initfile'], 'r')
        initfile = ' ' + file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for idx_arg, arg in enumerate(arg_initfile):
            if arg == '-initz':
                initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')]
            if arg == '-initcenter':
                initcenter = int(arg_initfile[idx_arg + 1])
    if '-initlabel' in arguments:
        # get absolute path of label
        fname_initlabel = os.path.abspath(arguments['-initlabel'])
    if '-param' in arguments:
        param.update(arguments['-param'][0])
    verbose = int(arguments.get('-v'))
    sct.init_sct(log_level=verbose, update=True)  # Update log level
    remove_temp_files = int(arguments['-r'])
    denoise = int(arguments['-denoise'])
    laplacian = int(arguments['-laplacian'])

    path_tmp = sct.tmp_create(basename="label_vertebrae", verbose=verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    sct.printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = sct.cache_signature(input_files=[fname_in, fname_seg], )
    cachefile = os.path.join(curdir, "straightening.cache")
    if sct.cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(
                    os.path.join(
                        curdir,
                        "warp_straight2curve.nii.gz")) and os.path.isfile(
                            os.path.join(curdir, "straight_ref.nii.gz")):
        # if they exist, copy them into current folder
        sct.printv('Reusing existing warping field which seems to be valid',
                   verbose, 'warning')
        sct.copy(os.path.join(curdir, "warp_curve2straight.nii.gz"),
                 'warp_curve2straight.nii.gz')
        sct.copy(os.path.join(curdir, "warp_straight2curve.nii.gz"),
                 'warp_straight2curve.nii.gz')
        sct.copy(os.path.join(curdir, "straight_ref.nii.gz"),
                 'straight_ref.nii.gz')
        # apply straightening
        s, o = sct.run([
            'sct_apply_transfo', '-i', 'data.nii', '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'data_straight.nii'
        ])
    else:
        sct_straighten_spinalcord.main(args=[
            '-i',
            'data.nii',
            '-s',
            'segmentation.nii',
            '-r',
            str(remove_temp_files),
            '-v',
            str(verbose),
        ])
        sct.cache_save(cachefile, cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    sct.printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = sct.run([
        'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x',
        'linear', '-o', 'data_straightr.nii'
    ],
                   verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    sct.printv('\nApply straightening to segmentation...', verbose)
    sct.run(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation.nii', 'data_straightr.nii',
         'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'),
        verbose=verbose,
        is_sct_binary=True,
    )
    # Threshold segmentation at 0.5
    sct.run([
        'sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o',
        'segmentation_straight.nii'
    ], verbose)

    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        sct.printv('\nApply straightening to disc labels...', verbose)
        sct.run(
            'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labeldisc_straight.nii.gz', 'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
        )
        label_vert('segmentation_straight.nii',
                   'labeldisc_straight.nii.gz',
                   verbose=1)

    else:
        # create label to identify disc
        sct.printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, file_labelz)
        if initz or initcenter:
            if initcenter:
                # find z centered in FOV
                nii = Image('segmentation.nii').change_orientation("RPI")
                nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
                z_center = int(np.round(nz / 2))  # get z_center
                initz = [z_center, initcenter]
            # create single label and output as labels.nii.gz
            label = ProcessLabels(
                'segmentation.nii',
                fname_output='tmp.labelz.nii.gz',
                coordinates=['{},{}'.format(initz[0], initz[1])])
            im_label = label.process('create-seg')
            im_label.data = dilate(
                im_label.data, 3,
                'ball')  # TODO: create a dilation method specific to labels,
            # which does not apply a convolution across all voxels (highly inneficient)
            im_label.save(fname_labelz)
        elif fname_initlabel:
            Image(fname_initlabel).save(fname_labelz)
        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            if not remove_temp_files:  # because verbose is here also used for keeping temp files
                verbose_detect_c2c3 = 2
            else:
                verbose_detect_c2c3 = 0
            im_label_c2c3 = detect_c2c3(im_data,
                                        im_seg,
                                        contrast,
                                        verbose=verbose_detect_c2c3)
            ind_label = np.where(im_label_c2c3.data)
            if not np.size(ind_label) == 0:
                im_label_c2c3.data[ind_label] = 3
            else:
                sct.printv(
                    'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils',
                    1, 'error')
                sys.exit()
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz)

        # Apply straightening to z-label
        sct.printv('\nAnd apply straightening to label...', verbose)
        sct.run(
            'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labelz_straight.nii.gz', 'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
        )
        # get z value and disk value to initialize labeling
        sct.printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        sct.printv('.. ' + str(init_disc), verbose)

        # denoise data
        if denoise:
            sct.printv('\nDenoise data...', verbose)
            sct.run([
                'sct_maths', '-i', 'data_straightr.nii', '-denoise', 'h=0.05',
                '-o', 'data_straightr.nii'
            ], verbose)

        # apply laplacian filtering
        if laplacian:
            sct.printv('\nApply Laplacian filter...', verbose)
            sct.run([
                'sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1',
                '-o', 'data_straightr.nii'
            ], verbose)

        # detect vertebral levels on straight spinal cord
        init_disc[1] = init_disc[1] - 1
        vertebral_detection('data_straightr.nii',
                            'segmentation_straight.nii',
                            contrast,
                            param,
                            init_disc=init_disc,
                            verbose=verbose,
                            path_template=path_template,
                            path_output=path_output,
                            scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    sct.printv('\nUn-straighten labeling...', verbose)
    sct.run(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation_straight_labeled.nii', 'segmentation.nii',
         'warp_straight2curve.nii.gz', 'segmentation_labeled.nii',
         'NearestNeighbor'),
        verbose=verbose,
        is_sct_binary=True,
    )
    # Clean labeled segmentation
    sct.printv(
        '\nClean labeled segmentation (correct interpolation errors)...',
        verbose)
    clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii',
                               'segmentation_labeled.nii')

    # label discs
    sct.printv('\nLabel discs...', verbose)
    label_discs('segmentation_labeled.nii', verbose=verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = sct.extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output,
                                     file_seg + '_labeled' + ext_seg)
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled)
    sct.generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled_disc.nii"),
        os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
        os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose)
    sct.generate_output_file(
        os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
        os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose)
    sct.generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"),
                             os.path.join(path_output, "straight_ref.nii.gz"),
                             verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        sct.printv('\nRemove temporary files...', verbose)
        sct.rmtree(path_tmp)

    # Generate QC report
    if param.path_qc is not None:
        path_qc = os.path.abspath(param.path_qc)
        qc_dataset = arguments.get("-qc-dataset", None)
        qc_subject = arguments.get("-qc-subject", None)
        labeled_seg_file = os.path.join(path_output,
                                        file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in,
                    fname_seg=labeled_seg_file,
                    args=args,
                    path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset,
                    subject=qc_subject,
                    process='sct_label_vertebrae')

    sct.display_viewer_syntax([fname_in, fname_seg_labeled],
                              colormaps=['', 'subcortical'],
                              opacities=['1', '0.5'])