Exemple #1
0
def get_geometry(name="square",
                 n=5,
                 nedges=None,
                 rot=0.,
                 clean=True,
                 geo=None,
                 shift=[0., 0., 0.]):
    """ Create a 0d island"""
    lattice_name = name
    if lattice_name == "honeycomb":
        geometry_builder = geometry.honeycomb_lattice
        if nedges == None: nedges = 6
    elif lattice_name == "square":
        geometry_builder = geometry.square_lattice
        if nedges == None: nedges = 4
    elif lattice_name == "kagome":
        geometry_builder = geometry.kagome_lattice
        if nedges == None: nedges = 3
    elif lattice_name == "lieb":
        geometry_builder = geometry.lieb_lattice
        if nedges == None: nedges = 4
    elif lattice_name == "triangular":
        geometry_builder = geometry.triangular_lattice
        if nedges == None: nedges = 3
    else: raise
    # first create a raw unit cell
    if geo is not None:
        print("Geometry generator taken from input")
        g = geo  # builder is input geometry
    else:
        g = geometry_builder()  # build a 2d unit cell
    nf = float(n)  # get the desired size, in float
    g = g.supercell(int(7 * n))  # create supercell
    g.set_finite()  # set as finite system
    g.center()  # center the geometry
    # now scuplt the geometry
    g = sculpt.rotate(g, rot)  # initial rotation
    # now shift the lattice
    g.x += shift[0]
    g.y += shift[1]
    g.z += shift[2]
    g.xyz2r()

    def f(x, y):
        return x > -nf * (np.cos(np.pi / 3) + 1.)  # function to use as cut

    for i in range(nedges):  # loop over rotations, 60 degrees
        g = sculpt.intersec(g, f)  # retain certain atoms
        g = sculpt.rotate(g, 2. * np.pi / nedges)  # rotate 60 degrees
    if clean:  # if it is cleaned
        g = sculpt.remove_unibonded(g)  # remove single bonded atoms
        g = sculpt.remove_unibonded(g)  # remove single bonded atoms
    g.center()  # center the geometry
    return g
Exemple #2
0
def get_geometry(name="square",n=5,nedges=None,rot=0.,clean=True):
  """ Create a 0d island"""
  lattice_name = name
  if lattice_name=="honeycomb":
    geometry_builder = geometry.honeycomb_lattice
    if nedges==None: nedges = 6
  elif lattice_name=="square":
    geometry_builder = geometry.square_lattice
    if nedges==None: nedges = 4
  elif lattice_name=="kagome":
    geometry_builder = geometry.kagome_lattice
    if nedges==None: nedges = 3
  elif lattice_name=="lieb":
    geometry_builder = geometry.lieb_lattice
    if nedges==None: nedges = 4
  elif lattice_name=="triangular":
    geometry_builder = geometry.triangular_lattice
    if nedges==None: nedges = 3
  else: raise
  # first create a raw unit cell
  g = geometry_builder()  # build a 2d unit cell
  nf = float(n)   # get the desired size, in float
  g = g.supercell(7*n)   # create supercell
  g.set_finite() # set as finite system
  g.center() # center the geometry
  # now scuplt the geometry
  g = sculpt.rotate(g,rot) # initial rotation
  def f(x,y): return x>-nf*(np.cos(np.pi/3)+1.)  # function to use as cut
  for i in range(nedges): # loop over rotations, 60 degrees
    g = sculpt.intersec(g,f) # retain certain atoms
    g = sculpt.rotate(g,2.*np.pi/nedges) # rotate 60 degrees
  if clean: # if it is cleaned
    g = sculpt.remove_unibonded(g)  # remove single bonded atoms
  g.center() # center the geometry
  return g
Exemple #3
0
def generate_mullen_surface(nx,ny):
  """Generate a Mullen surface, return bulk hamiltonian and surface cell"""
  g = geometry.honeycomb_lattice_zigzag_cell()
  g = g.supercell([2*nx+2+1,1]) # two dimensional
  gb = g.copy() # copy geometry
  g.dimensionality = 1 # reduce dimensionality
  g = sculpt.remove_unibonded(g)
  gb = sculpt.remove_unibonded(gb)
  g.center()
  gb.center()
  
  # now add the hexagon
  
  dy = max(g.y) + 1.9
  dx = 0.
  xx = np.array([dx,0.,0.]) 
  g.r = [ri+xx for ri in g.r] # displace whole
  r1 = np.array([-1.,0.+dy,0.])
  r2 = np.array([1.,0.+dy,0.])
  r3 = np.array([.5,np.sqrt(3.0)/2.+dy,0.])
  r4 = np.array([-.5,np.sqrt(3.0)/2.+dy,0.])
  r5 = np.array([.5,-np.sqrt(3.0)/2.+dy,0.])
  r6 = np.array([-.5,-np.sqrt(3.0)/2.+dy,0.])
  g.r = [ri for ri in g.r] + [r1,r2,r3,r4,r5,r6] # upper
  g.r = np.array(g.r)
  g.r2xyz()
  
  g.write()
  
  h = g.get_hamiltonian() # initialize hamiltonian

  def funh(ri,rj):
    dr = ri-rj
    if .1<dr.dot(dr)<1.3: return 1.0
    else: return 0.0
  
  
  h = hamiltonians.generate_parametric_hopping(h,funh)
  h.remove_spin() # remove spin degree of freedom 
  
  hb = gb.get_hamiltonian() # bulk hamiltonian
  hb.remove_spin() # remove spin
 
  return (h,hb) 
Exemple #4
0
def generate_mullen_surface(nx, ny):
    """Generate a Mullen surface, return bulk hamiltonian and surface cell"""
    g = geometry.honeycomb_lattice_zigzag_cell()
    g = g.supercell([2 * nx + 2 + 1, 1])  # two dimensional
    gb = g.copy()  # copy geometry
    g.dimensionality = 1  # reduce dimensionality
    g = sculpt.remove_unibonded(g)
    gb = sculpt.remove_unibonded(gb)
    g.center()
    gb.center()

    # now add the hexagon

    dy = max(g.y) + 1.9
    dx = 0.
    xx = np.array([dx, 0., 0.])
    g.r = [ri + xx for ri in g.r]  # displace whole
    r1 = np.array([-1., 0. + dy, 0.])
    r2 = np.array([1., 0. + dy, 0.])
    r3 = np.array([.5, np.sqrt(3.0) / 2. + dy, 0.])
    r4 = np.array([-.5, np.sqrt(3.0) / 2. + dy, 0.])
    r5 = np.array([.5, -np.sqrt(3.0) / 2. + dy, 0.])
    r6 = np.array([-.5, -np.sqrt(3.0) / 2. + dy, 0.])
    g.r = [ri for ri in g.r] + [r1, r2, r3, r4, r5, r6]  # upper
    g.r = np.array(g.r)
    g.r2xyz()

    g.write()

    h = g.get_hamiltonian()  # initialize hamiltonian

    def funh(ri, rj):
        dr = ri - rj
        if .1 < dr.dot(dr) < 1.3: return 1.0
        else: return 0.0

    h = hamiltonians.generate_parametric_hopping(h, funh)
    h.remove_spin()  # remove spin degree of freedom

    hb = gb.get_hamiltonian()  # bulk hamiltonian
    hb.remove_spin()  # remove spin

    return (h, hb)
Exemple #5
0
def generate_pentagon_island(nx,ny,pentagons=[0]):
  """Generate a Mullen island"""
  g = geometry.honeycomb_zigzag_ribbon(ny)
  g = g.supercell(2*nx+1)
  g.dimensionality = 0
  minx = np.min(g.x)
  
  def finite(x,y):
    if x<minx+.1: return False
    return True
  
  g = sculpt.intersec(g,finite)
  
  g = sculpt.remove_unibonded(g)
  
  
  g.center()
  
  # now add the hexagon
  
  dy = max(g.y) + 1.9

  ym = max(g.y) # position of zigzag atoms
  xz = [] # list of zigzag atoms

  for ir in g.r: # loop over atoms
    if (ir[1]-ym)<0.1: xz.append(ir[0]) # store upper zigzag atom
  for ip in pentagons: # loop over pentagons 
    # generate positions
    r1 = np.array([-1.+dx,0.+dy,0.])
    r2 = np.array([1.+dx,0.+dy,0.])
    r3 = np.array([.5+dx,np.sqrt(3.0)/2.+dy,0.])
    r4 = np.array([-.5+dx,np.sqrt(3.0)/2.+dy,0.])
    r5 = np.array([.5+dx,-np.sqrt(3.0)/2.+dy,0.])
    r6 = np.array([-.5+dx,-np.sqrt(3.0)/2.+dy,0.])
  
    # add the extra hexagons
    g.r = [ri for ri in g.r] + [r1,r2,r3,r4,r5,r6]
    g.r = [ri for ri in g.r] + [-r1,-r2,-r3,-r4,-r5,-r6]
  #g.r =  [r1,r2,r3,r4,r5,r6]
  g.r = np.array(g.r)
  g.r2xyz()
  
  g.write()
  
  h = g.get_hamiltonian() # initialize hamiltonian
  
  def funh(ri,rj):
    dr = ri-rj
    if .1<dr.dot(dr)<1.3: return 1.0
    else: return 0.0
  
  
  h = hamiltonians.generate_parametric_hopping(h,funh)
  return h
Exemple #6
0
def generate_pentagon_island(nx, ny, pentagons=[0]):
    """Generate a Mullen island"""
    g = geometry.honeycomb_zigzag_ribbon(ny)
    g = g.supercell(2 * nx + 1)
    g.dimensionality = 0
    minx = np.min(g.x)

    def finite(x, y):
        if x < minx + .1: return False
        return True

    g = sculpt.intersec(g, finite)

    g = sculpt.remove_unibonded(g)

    g.center()

    # now add the hexagon

    dy = max(g.y) + 1.9

    ym = max(g.y)  # position of zigzag atoms
    xz = []  # list of zigzag atoms

    for ir in g.r:  # loop over atoms
        if (ir[1] - ym) < 0.1: xz.append(ir[0])  # store upper zigzag atom
    for ip in pentagons:  # loop over pentagons
        # generate positions
        r1 = np.array([-1. + dx, 0. + dy, 0.])
        r2 = np.array([1. + dx, 0. + dy, 0.])
        r3 = np.array([.5 + dx, np.sqrt(3.0) / 2. + dy, 0.])
        r4 = np.array([-.5 + dx, np.sqrt(3.0) / 2. + dy, 0.])
        r5 = np.array([.5 + dx, -np.sqrt(3.0) / 2. + dy, 0.])
        r6 = np.array([-.5 + dx, -np.sqrt(3.0) / 2. + dy, 0.])

        # add the extra hexagons
        g.r = [ri for ri in g.r] + [r1, r2, r3, r4, r5, r6]
        g.r = [ri for ri in g.r] + [-r1, -r2, -r3, -r4, -r5, -r6]
    #g.r =  [r1,r2,r3,r4,r5,r6]
    g.r = np.array(g.r)
    g.r2xyz()

    g.write()

    h = g.get_hamiltonian()  # initialize hamiltonian

    def funh(ri, rj):
        dr = ri - rj
        if .1 < dr.dot(dr) < 1.3: return 1.0
        else: return 0.0

    h = hamiltonians.generate_parametric_hopping(h, funh)
    return h
Exemple #7
0
def generate_mullen_island(nx,ny,pristine=False):
  """Generate a Mullen island"""
  g = geometry.honeycomb_zigzag_ribbon(ny)
  g = g.supercell(2*nx+1+2)
  g.dimensionality = 0
  minx = np.min(g.x)
  
  def finite(x,y):
    if x<minx+.1: return False
    return True
  
  g = sculpt.intersec(g,finite)
  
  g = sculpt.remove_unibonded(g)
  
  
  g.center()
  
  # now add the hexagon
  
  dy = max(g.y) + 1.9
  
  r1 = np.array([-1.,0.+dy,0.])
  r2 = np.array([1.,0.+dy,0.])
  r3 = np.array([.5,np.sqrt(3.0)/2.+dy,0.])
  r4 = np.array([-.5,np.sqrt(3.0)/2.+dy,0.])
  r5 = np.array([.5,-np.sqrt(3.0)/2.+dy,0.])
  r6 = np.array([-.5,-np.sqrt(3.0)/2.+dy,0.])

  if not pristine:  
    g.r = [ri for ri in g.r] + [r1,r2,r3,r4,r5,r6]
    g.r = [ri for ri in g.r] + [-r1,-r2,-r3,-r4,-r5,-r6]
  #g.r =  [r1,r2,r3,r4,r5,r6]
  g.r = np.array(g.r)
  g.r2xyz()
  
  g.write()
  
  h = g.get_hamiltonian() # initialize hamiltonian
  
  def funh(ri,rj):
    dr = ri-rj
    if .1<dr.dot(dr)<1.3: return 1.0
    else: return 0.0
  
  
  h = hamiltonians.generate_parametric_hopping(h,funh)
  return h
Exemple #8
0
def generate_mullen_island(nx, ny, pristine=False):
    """Generate a Mullen island"""
    g = geometry.honeycomb_zigzag_ribbon(ny)
    g = g.supercell(2 * nx + 1 + 2)
    g.dimensionality = 0
    minx = np.min(g.x)

    def finite(x, y):
        if x < minx + .1: return False
        return True

    g = sculpt.intersec(g, finite)

    g = sculpt.remove_unibonded(g)

    g.center()

    # now add the hexagon

    dy = max(g.y) + 1.9

    r1 = np.array([-1., 0. + dy, 0.])
    r2 = np.array([1., 0. + dy, 0.])
    r3 = np.array([.5, np.sqrt(3.0) / 2. + dy, 0.])
    r4 = np.array([-.5, np.sqrt(3.0) / 2. + dy, 0.])
    r5 = np.array([.5, -np.sqrt(3.0) / 2. + dy, 0.])
    r6 = np.array([-.5, -np.sqrt(3.0) / 2. + dy, 0.])

    if not pristine:
        g.r = [ri for ri in g.r] + [r1, r2, r3, r4, r5, r6]
        g.r = [ri for ri in g.r] + [-r1, -r2, -r3, -r4, -r5, -r6]
    #g.r =  [r1,r2,r3,r4,r5,r6]
    g.r = np.array(g.r)
    g.r2xyz()

    g.write()

    h = g.get_hamiltonian()  # initialize hamiltonian

    def funh(ri, rj):
        dr = ri - rj
        if .1 < dr.dot(dr) < 1.3: return 1.0
        else: return 0.0

    h = hamiltonians.generate_parametric_hopping(h, funh)
    return h
Exemple #9
0
 def clean(self, iterative=False):
     return sculpt.remove_unibonded(self, iterative=iterative)
Exemple #10
0
#g = geometry.square_lattice()  # create a honeycomb lattice
#g = geometry.kagome_lattice()  # create a honeycomb lattice
g = g.supercell(50) # create supercell
g.set_finite()


# create a hexagonal island


def f(x,y):
  """ Retain a plane"""
  return x>-3*(np.cos(np.pi/3)+1.)

#g = sculpt.rotate(g,np.pi/3.)

nedges = 3

for j in range(1):
  for i in range(nedges): # loop over rotations
    g = sculpt.intersec(g,f) # retain certain atoms
    g = sculpt.rotate(g,2.*np.pi/nedges)
  g.center()

g = sculpt.remove_unibonded(g)

h = g.get_hamiltonian()

hamiltonians.ldos(h,e=0.0)

g.write()
Exemple #11
0
 def clean(self):
   return sculpt.remove_unibonded(self)