def test_save_load_autozi(legacy=False): prefix = "AUTOZI_" model = AUTOZI(adata, latent_distribution="normal") model.train(1, train_size=0.5) ab1 = model.get_alphas_betas() if legacy: legacy_save(model, save_path, overwrite=True, save_anndata=True, prefix=prefix) else: model.save(save_path, overwrite=True, save_anndata=True, prefix=prefix) model = AUTOZI.load(save_path, prefix=prefix) model.get_latent_representation() tmp_adata = scvi.data.synthetic_iid(n_genes=200) with pytest.raises(ValueError): AUTOZI.load(save_path, adata=tmp_adata, prefix=prefix) model = AUTOZI.load(save_path, adata=adata, prefix=prefix) assert "test" in adata.uns["_scvi"]["data_registry"] assert adata.uns["_scvi"]["data_registry"]["test"] == dict( attr_name="obs", attr_key="cont1") ab2 = model.get_alphas_betas() np.testing.assert_array_equal(ab1["alpha_posterior"], ab2["alpha_posterior"]) np.testing.assert_array_equal(ab1["beta_posterior"], ab2["beta_posterior"]) assert model.is_trained is True
def test_autozi(): data = synthetic_iid(n_batches=1, run_setup_anndata=False) AUTOZI.setup_anndata( data, batch_key="batch", labels_key="labels", ) for disp_zi in ["gene", "gene-label"]: autozivae = AUTOZI( data, dispersion=disp_zi, zero_inflation=disp_zi, ) autozivae.train(1, plan_kwargs=dict(lr=1e-2), check_val_every_n_epoch=1) assert len(autozivae.history["elbo_train"]) == 1 assert len(autozivae.history["elbo_validation"]) == 1 autozivae.get_elbo(indices=autozivae.validation_indices) autozivae.get_reconstruction_error( indices=autozivae.validation_indices) autozivae.get_marginal_ll(indices=autozivae.validation_indices, n_mc_samples=3) autozivae.get_alphas_betas() # Model library size. for disp_zi in ["gene", "gene-label"]: autozivae = AUTOZI( data, dispersion=disp_zi, zero_inflation=disp_zi, use_observed_lib_size=False, ) autozivae.train(1, plan_kwargs=dict(lr=1e-2), check_val_every_n_epoch=1) assert hasattr(autozivae.module, "library_log_means") and hasattr( autozivae.module, "library_log_vars") assert len(autozivae.history["elbo_train"]) == 1 assert len(autozivae.history["elbo_validation"]) == 1 autozivae.get_elbo(indices=autozivae.validation_indices) autozivae.get_reconstruction_error( indices=autozivae.validation_indices) autozivae.get_marginal_ll(indices=autozivae.validation_indices, n_mc_samples=3) autozivae.get_alphas_betas()
def test_saving_and_loading(save_path): def test_save_load_model(cls, adata, save_path): model = cls(adata, latent_distribution="normal") model.train(1, train_size=0.2) z1 = model.get_latent_representation(adata) test_idx1 = model.validation_indices model.save(save_path, overwrite=True, save_anndata=True) model = cls.load(save_path) model.get_latent_representation() tmp_adata = scvi.data.synthetic_iid(n_genes=200) with pytest.raises(ValueError): cls.load(save_path, tmp_adata) model = cls.load(save_path, adata) z2 = model.get_latent_representation() test_idx2 = model.validation_indices np.testing.assert_array_equal(z1, z2) np.testing.assert_array_equal(test_idx1, test_idx2) assert model.is_trained is True save_path = os.path.join(save_path, "tmp") adata = synthetic_iid() for cls in [SCVI, LinearSCVI, TOTALVI]: print(cls) test_save_load_model(cls, adata, save_path) # AUTOZI model = AUTOZI(adata, latent_distribution="normal") model.train(1, train_size=0.5) ab1 = model.get_alphas_betas() model.save(save_path, overwrite=True, save_anndata=True) model = AUTOZI.load(save_path) model.get_latent_representation() tmp_adata = scvi.data.synthetic_iid(n_genes=200) with pytest.raises(ValueError): AUTOZI.load(save_path, tmp_adata) model = AUTOZI.load(save_path, adata) ab2 = model.get_alphas_betas() np.testing.assert_array_equal(ab1["alpha_posterior"], ab2["alpha_posterior"]) np.testing.assert_array_equal(ab1["beta_posterior"], ab2["beta_posterior"]) assert model.is_trained is True # SCANVI model = SCANVI(adata, "label_0") model.train(max_epochs=1, train_size=0.5) p1 = model.predict() model.save(save_path, overwrite=True, save_anndata=True) model = SCANVI.load(save_path) model.get_latent_representation() tmp_adata = scvi.data.synthetic_iid(n_genes=200) with pytest.raises(ValueError): SCANVI.load(save_path, tmp_adata) model = SCANVI.load(save_path, adata) p2 = model.predict() np.testing.assert_array_equal(p1, p2) assert model.is_trained is True
def test_saving_and_loading(save_path): def test_save_load_model(cls, adata, save_path): model = cls(adata, latent_distribution="normal") model.train(1) z1 = model.get_latent_representation(adata) test_idx1 = model.test_indices model.save(save_path, overwrite=True) model = cls.load(adata, save_path) z2 = model.get_latent_representation() test_idx2 = model.test_indices np.testing.assert_array_equal(z1, z2) np.testing.assert_array_equal(test_idx1, test_idx2) assert model.is_trained is True save_path = os.path.join(save_path, "tmp") adata = synthetic_iid() for cls in [SCVI, LinearSCVI, TOTALVI]: print(cls) test_save_load_model(cls, adata, save_path) # AUTOZI model = AUTOZI(adata, latent_distribution="normal") model.train(1) ab1 = model.get_alphas_betas() model.save(save_path, overwrite=True) model = AUTOZI.load(adata, save_path) ab2 = model.get_alphas_betas() np.testing.assert_array_equal(ab1["alpha_posterior"], ab2["alpha_posterior"]) np.testing.assert_array_equal(ab1["beta_posterior"], ab2["beta_posterior"]) assert model.is_trained is True # SCANVI model = SCANVI(adata, "undefined_0") model.train(n_epochs_unsupervised=1, n_epochs_semisupervised=1) p1 = model.predict() model.save(save_path, overwrite=True) model = SCANVI.load(adata, save_path) p2 = model.predict() np.testing.assert_array_equal(p1, p2) assert model.is_trained is True # GIMVI model = GIMVI(adata, adata) model.train(1) z1 = model.get_latent_representation([adata]) z2 = model.get_latent_representation([adata]) np.testing.assert_array_equal(z1, z2) model.save(save_path, overwrite=True) model = GIMVI.load(adata, adata, save_path) z2 = model.get_latent_representation([adata]) np.testing.assert_array_equal(z1, z2) assert model.is_trained is True
def test_autozi(): data = synthetic_iid(n_batches=1) for disp_zi in ["gene", "gene-label"]: autozivae = AUTOZI( data, dispersion=disp_zi, zero_inflation=disp_zi, ) autozivae.train(1, lr=1e-2) autozivae.get_elbo(indices=autozivae.test_indices) autozivae.get_reconstruction_error(indices=autozivae.test_indices) autozivae.get_marginal_ll(indices=autozivae.test_indices) autozivae.get_alphas_betas()
def test_autozi(): data = synthetic_iid(n_batches=1) for disp_zi in ["gene", "gene-label"]: autozivae = AUTOZI( data, dispersion=disp_zi, zero_inflation=disp_zi, ) autozivae.train(1, plan_kwargs=dict(lr=1e-2), check_val_every_n_epoch=1) assert len(autozivae.history["elbo_train"]) == 1 assert len(autozivae.history["elbo_validation"]) == 1 autozivae.get_elbo(indices=autozivae.validation_indices) autozivae.get_reconstruction_error(indices=autozivae.validation_indices) autozivae.get_marginal_ll(indices=autozivae.validation_indices, n_mc_samples=3) autozivae.get_alphas_betas()
def test_autozi(): data = synthetic_iid(n_batches=1) for disp_zi in ["gene", "gene-label"]: autozivae = AUTOZI( data, dispersion=disp_zi, zero_inflation=disp_zi, ) autozivae.train(1, lr=1e-2, frequency=1) assert len(autozivae.history["elbo_train_set"]) == 2 assert len(autozivae.history["elbo_test_set"]) == 2 autozivae.get_elbo(indices=autozivae.test_indices) autozivae.get_reconstruction_error(indices=autozivae.test_indices) autozivae.get_marginal_ll(indices=autozivae.test_indices) autozivae.get_alphas_betas()