Exemple #1
0
    def test_is_valid_strict_true(self):
        """Test the ``GreaterThan.is_valid`` method with strict True.

        If strict is True, equal values should count as invalid.

        Input:
        - Table with a strictly valid row, a strictly invalid row and
          a row that has the same value for both high and low.
        Output:
        - True should be returned for the strictly valid row and False
          for the other two.
        """
        # Setup
        instance = GreaterThan(low='a', high='b', strict=False)

        # Run
        table_data = pd.DataFrame({
            'a': [1, 2, 3],
            'b': [4, 2, 2],
            'c': [7, 8, 9]
        })
        out = instance.is_valid(table_data)

        # Assert
        expected_out = pd.Series([True, True, False])
        pd.testing.assert_series_equal(expected_out, out)
Exemple #2
0
    def test_is_valid_false_not_strict(self):
        """Test the ``GreaterThan.is_valid`` method when the column values are not valid
        and the comparison is not strict.

        If the columns do not satisfy the costraint, result is a series of ``False`` values.

        Input:
        - Table data, where the values of the ``low`` column are higher
        than the values of the ``high`` column (pandas.DataFrame)
        Output:
        - Series of ``True`` values (pandas.Series)
        """
        # Setup
        instance = GreaterThan(low='a', high='b')

        # Run
        table_data = pd.DataFrame({
            'a': [1, 2, 3],
            'b': [0, 1, 2],
            'c': [7, 8, 9]
        })
        out = instance.is_valid(table_data)

        # Assert
        expected_out = pd.Series([False, False, False])
        pd.testing.assert_series_equal(expected_out, out)