Exemple #1
0
def example_bfv_basics():
    print("Example: BFV Basics")
    #In this example, we demonstrate performing simple computations (a polynomial
    #evaluation) on encrypted integers using the BFV encryption scheme.
    #
    #The first task is to set up an instance of the EncryptionParameters class.
    #It is critical to understand how the different parameters behave, how they
    #affect the encryption scheme, performance, and the security level. There are
    #three encryption parameters that are necessary to set:
    #
    #    - poly_modulus_degree (degree of polynomial modulus);
    #    - coeff_modulus ([ciphertext] coefficient modulus);
    #    - plain_modulus (plaintext modulus; only for the BFV scheme).
    #
    #The BFV scheme cannot perform arbitrary computations on encrypted data.
    #Instead, each ciphertext has a specific quantity called the `invariant noise
    #budget' -- or `noise budget' for short -- measured in bits. The noise budget
    #in a freshly encrypted ciphertext (initial noise budget) is determined by
    #the encryption parameters. Homomorphic operations consume the noise budget
    #at a rate also determined by the encryption parameters. In BFV the two basic
    #operations allowed on encrypted data are additions and multiplications, of
    #which additions can generally be thought of as being nearly free in terms of
    #noise budget consumption compared to multiplications. Since noise budget
    #consumption compounds in sequential multiplications, the most significant
    #factor in choosing appropriate encryption parameters is the multiplicative
    #depth of the arithmetic circuit that the user wants to evaluate on encrypted
    #data. Once the noise budget of a ciphertext reaches zero it becomes too
    #corrupted to be decrypted. Thus, it is essential to choose the parameters to
    #be large enough to support the desired computation; otherwise the result is
    #impossible to make sense of even with the secret key.
    parms = EncryptionParameters(scheme_type.BFV)

    #The first parameter we set is the degree of the `polynomial modulus'. This
    #must be a positive power of 2, representing the degree of a power-of-two
    #cyclotomic polynomial; it is not necessary to understand what this means.
    #
    #Larger poly_modulus_degree makes ciphertext sizes larger and all operations
    #slower, but enables more complicated encrypted computations. Recommended
    #values are 1024, 2048, 4096, 8192, 16384, 32768, but it is also possible
    #to go beyond this range.
    #
    #In this example we use a relatively small polynomial modulus. Anything
    #smaller than this will enable only very restricted encrypted computations.

    poly_modulus_degree = 4096
    parms.set_poly_modulus_degree(poly_modulus_degree)

    #Next we set the [ciphertext] `coefficient modulus' (coeff_modulus). This
    #parameter is a large integer, which is a product of distinct prime numbers,
    #each up to 60 bits in size. It is represented as a vector of these prime
    #numbers, each represented by an instance of the SmallModulus class. The
    #bit-length of coeff_modulus means the sum of the bit-lengths of its prime
    #factors.
    #
    #A larger coeff_modulus implies a larger noise budget, hence more encrypted
    #computation capabilities. However, an upper bound for the total bit-length
    #of the coeff_modulus is determined by the poly_modulus_degree, as follows:
    #
    #    +----------------------------------------------------+
    #    | poly_modulus_degree | max coeff_modulus bit-length |
    #    +---------------------+------------------------------+
    #    | 1024                | 27                           |
    #    | 2048                | 54                           |
    #    | 4096                | 109                          |
    #    | 8192                | 218                          |
    #    | 16384               | 438                          |
    #    | 32768               | 881                          |
    #    +---------------------+------------------------------+
    #
    #These numbers can also be found in native/src/seal/util/hestdparms.h encoded
    #in the function SEAL_HE_STD_PARMS_128_TC, and can also be obtained from the
    #function
    #
    #    CoeffModulus::MaxBitCount(poly_modulus_degree).
    #
    #For example, if poly_modulus_degree is 4096, the coeff_modulus could consist
    #of three 36-bit primes (108 bits).
    #
    #Microsoft SEAL comes with helper functions for selecting the coeff_modulus.
    #For new users the easiest way is to simply use
    #
    #    CoeffModulus::BFVDefault(poly_modulus_degree),
    #
    #which returns std::vector<SmallModulus> consisting of a generally good choice
    #for the given poly_modulus_degree.
    parms.set_coeff_modulus(CoeffModulus.BFVDefault(poly_modulus_degree))

    #The plaintext modulus can be any positive integer, even though here we take
    #it to be a power of two. In fact, in many cases one might instead want it
    #to be a prime number; we will see this in later examples. The plaintext
    #modulus determines the size of the plaintext data type and the consumption
    #of noise budget in multiplications. Thus, it is essential to try to keep the
    #plaintext data type as small as possible for best performance. The noise
    #budget in a freshly encrypted ciphertext is
    #
    #    ~ log2(coeff_modulus/plain_modulus) (bits)
    #
    #and the noise budget consumption in a homomorphic multiplication is of the
    #form log2(plain_modulus) + (other terms).
    #
    #The plaintext modulus is specific to the BFV scheme, and cannot be set when
    #using the CKKS scheme.

    parms.set_plain_modulus(1024)

    #Now that all parameters are set, we are ready to construct a SEALContext
    #object. This is a heavy class that checks the validity and properties of the
    #parameters we just set.
    context = SEALContext.Create(parms)

    #Print the parameters that we have chosen.
    print("Set encryption parameters and print")
    print_parameters(context)
    print("~~~~~~ A naive way to calculate 4(x^2+1)(x+1)^2. ~~~~~~")

    #The encryption schemes in Microsoft SEAL are public key encryption schemes.
    #For users unfamiliar with this terminology, a public key encryption scheme
    #has a separate public key for encrypting data, and a separate secret key for
    #decrypting data. This way multiple parties can encrypt data using the same
    #shared public key, but only the proper recipient of the data can decrypt it
    #with the secret key.
    #
    #We are now ready to generate the secret and public keys. For this purpose
    #we need an instance of the KeyGenerator class. Constructing a KeyGenerator
    #automatically generates the public and secret key, which can immediately be
    #read to local variables.

    keygen = KeyGenerator(context)
    public_key = keygen.public_key()
    secret_key = keygen.secret_key()

    #To be able to encrypt we need to construct an instance of Encryptor. Note
    #that the Encryptor only requires the public key, as expected.
    encryptor = Encryptor(context, public_key)

    #Computations on the ciphertexts are performed with the Evaluator class. In
    #a real use-case the Evaluator would not be constructed by the same party
    #that holds the secret key.
    evaluator = Evaluator(context)

    #We will of course want to decrypt our results to verify that everything worked,
    #so we need to also construct an instance of Decryptor. Note that the Decryptor
    #requires the secret key.
    decryptor = Decryptor(context, secret_key)

    #As an example, we evaluate the degree 4 polynomial
    #
    #    4x^4 + 8x^3 + 8x^2 + 8x + 4
    #
    #over an encrypted x = 6. The coefficients of the polynomial can be considered
    #as plaintext inputs, as we will see below. The computation is done modulo the
    #plain_modulus 1024.
    #
    #While this examples is simple and easy to understand, it does not have much
    #practical value. In later examples we will demonstrate how to compute more
    #efficiently on encrypted integers and real or complex numbers.
    #
    #Plaintexts in the BFV scheme are polynomials of degree less than the degree
    #of the polynomial modulus, and coefficients integers modulo the plaintext
    #modulus. For readers with background in ring theory, the plaintext space is
    #the polynomial quotient ring Z_T[X]/(X^N + 1), where N is poly_modulus_degree
    #and T is plain_modulus.
    #
    #To get started, we create a plaintext containing the constant 6. For the
    #plaintext element we use a constructor that takes the desired polynomial as
    #a string with coefficients represented as hexadecimal numbers.
    x = 6
    x_plain = Plaintext(str(x))
    print("Express x = {} as a plaintext polynomial 0x{}.".format(
        x, x_plain.to_string()))

    #We then encrypt the plaintext, producing a ciphertext.
    x_encrypted = Ciphertext()
    print("Encrypt x_plain to x_encrypted.")
    encryptor.encrypt(x_plain, x_encrypted)

    #In Microsoft SEAL, a valid ciphertext consists of two or more polynomials
    #whose coefficients are integers modulo the product of the primes in the
    #coeff_modulus. The number of polynomials in a ciphertext is called its `size'
    #and is given by Ciphertext::size(). A freshly encrypted ciphertext always
    #has size 2.
    print("    + size of freshly encrypted x: {}".format(x_encrypted.size()))

    #There is plenty of noise budget left in this freshly encrypted ciphertext.
    print("    + noise budget in freshly encrypted x: {} bits".format(
        decryptor.invariant_noise_budget(x_encrypted)))

    #We decrypt the ciphertext and print the resulting plaintext in order to
    #demonstrate correctness of the encryption.

    x_decrypted = Plaintext()
    decryptor.decrypt(x_encrypted, x_decrypted)
    print("    + decryption of x_encrypted: 0x{} ...... Correct.".format(
        x_decrypted.to_string()))

    #When using Microsoft SEAL, it is typically advantageous to compute in a way
    #that minimizes the longest chain of sequential multiplications. In other
    #words, encrypted computations are best evaluated in a way that minimizes
    #the multiplicative depth of the computation, because the total noise budget
    #consumption is proportional to the multiplicative depth. For example, for
    #our example computation it is advantageous to factorize the polynomial as
    #
    #    4x^4 + 8x^3 + 8x^2 + 8x + 4 = 4(x + 1)^2 * (x^2 + 1)
    #
    #to obtain a simple depth 2 representation. Thus, we compute (x + 1)^2 and
    #(x^2 + 1) separately, before multiplying them, and multiplying by 4.
    #
    #First, we compute x^2 and add a plaintext "1". We can clearly see from the
    #print-out that multiplication has consumed a lot of noise budget. The user
    #can vary the plain_modulus parameter to see its effect on the rate of noise
    #budget consumption.

    print("Compute x_sq_plus_one (x^2+1).")
    x_sq_plus_one = Ciphertext()
    evaluator.square(x_encrypted, x_sq_plus_one)
    plain_one = Plaintext("1")
    evaluator.add_plain_inplace(x_sq_plus_one, plain_one)

    #Encrypted multiplication results in the output ciphertext growing in size.
    #More precisely, if the input ciphertexts have size M and N, then the output
    #ciphertext after homomorphic multiplication will have size M+N-1. In this
    #case we perform a squaring, and observe both size growth and noise budget
    #consumption.
    print("    + size of x_sq_plus_one: {}".format(x_sq_plus_one.size()))
    print("    + noise budget in x_sq_plus_one: {} bits".format(
        decryptor.invariant_noise_budget(x_sq_plus_one)))

    #Even though the size has grown, decryption works as usual as long as noise
    #budget has not reached 0.
    decrypted_result = Plaintext()
    decryptor.decrypt(x_sq_plus_one, decrypted_result)
    print("    + decryption of x_sq_plus_one: 0x{} ...... Correct.".format(
        decrypted_result.to_string()))

    #Next, we compute (x + 1)^2.
    print("Compute x_plus_one_sq ((x+1)^2).")
    x_plus_one_sq = Ciphertext()
    evaluator.add_plain(x_encrypted, plain_one, x_plus_one_sq)
    evaluator.square_inplace(x_plus_one_sq)
    print("    + size of x_plus_one_sq: {}".format(x_plus_one_sq.size()))
    print("    + noise budget in x_plus_one_sq: {} bits".format(
        decryptor.invariant_noise_budget(x_plus_one_sq)))
    decryptor.decrypt(x_plus_one_sq, decrypted_result)
    print("    + decryption of x_plus_one_sq: 0x{} ...... Correct.".format(
        decrypted_result.to_string()))

    #Finally, we multiply (x^2 + 1) * (x + 1)^2 * 4.
    print("Compute encrypted_result (4(x^2+1)(x+1)^2).")
    encrypted_result = Ciphertext()
    plain_four = Plaintext("4")
    evaluator.multiply_plain_inplace(x_sq_plus_one, plain_four)
    evaluator.multiply(x_sq_plus_one, x_plus_one_sq, encrypted_result)
    print("    + size of encrypted_result: {}".format(encrypted_result.size()))
    print("    + noise budget in encrypted_result: {} bits".format(
        decryptor.invariant_noise_budget(encrypted_result)))
    print("NOTE: Decryption can be incorrect if noise budget is zero.")
    print("~~~~~~ A better way to calculate 4(x^2+1)(x+1)^2. ~~~~~~")

    #Noise budget has reached 0, which means that decryption cannot be expected
    #to give the correct result. This is because both ciphertexts x_sq_plus_one
    #and x_plus_one_sq consist of 3 polynomials due to the previous squaring
    #operations, and homomorphic operations on large ciphertexts consume much more
    #noise budget than computations on small ciphertexts. Computing on smaller
    #ciphertexts is also computationally significantly cheaper.

    #`Relinearization' is an operation that reduces the size of a ciphertext after
    #multiplication back to the initial size, 2. Thus, relinearizing one or both
    #input ciphertexts before the next multiplication can have a huge positive
    #impact on both noise growth and performance, even though relinearization has
    #a significant computational cost itself. It is only possible to relinearize
    #size 3 ciphertexts down to size 2, so often the user would want to relinearize
    #after each multiplication to keep the ciphertext sizes at 2.

    #Relinearization requires special `relinearization keys', which can be thought
    #of as a kind of public key. Relinearization keys can easily be created with
    #the KeyGenerator.

    #Relinearization is used similarly in both the BFV and the CKKS schemes, but
    #in this example we continue using BFV. We repeat our computation from before,
    #but this time relinearize after every multiplication.

    #We use KeyGenerator::relin_keys() to create relinearization keys.
    print("Generate relinearization keys.")
    relin_keys = keygen.relin_keys()

    #We now repeat the computation relinearizing after each multiplication.
    print("Compute and relinearize x_squared (x^2),")
    print("then compute x_sq_plus_one (x^2+1)")
    x_squared = Ciphertext()
    evaluator.square(x_encrypted, x_squared)
    print("    + size of x_squared: {}".format(x_squared.size()))
    evaluator.relinearize_inplace(x_squared, relin_keys)
    print("    + size of x_squared (after relinearization): {}".format(
        x_squared.size()))
    evaluator.add_plain(x_squared, plain_one, x_sq_plus_one)
    print("    + noise budget in x_sq_plus_one: {} bits".format(
        decryptor.invariant_noise_budget(x_sq_plus_one)))
    decryptor.decrypt(x_sq_plus_one, decrypted_result)
    print("    + decryption of x_sq_plus_one: 0x{}  ...... Correct.".format(
        decrypted_result.to_string()))

    x_plus_one = Ciphertext()
    print("Compute x_plus_one (x+1),")
    print("then compute and relinearize x_plus_one_sq ((x+1)^2).")
    evaluator.add_plain(x_encrypted, plain_one, x_plus_one)
    evaluator.square(x_plus_one, x_plus_one_sq)
    print("    + size of x_plus_one_sq: {}".format(x_plus_one_sq.size()))
    evaluator.relinearize_inplace(x_plus_one_sq, relin_keys)
    print("    + noise budget in x_plus_one_sq: {} bits".format(
        decryptor.invariant_noise_budget(x_plus_one_sq)))
    decryptor.decrypt(x_plus_one_sq, decrypted_result)
    print("    + decryption of x_plus_one_sq: 0x{}  ...... Correct.".format(
        decrypted_result.to_string()))

    print("Compute and relinearize encrypted_result (4(x^2+1)(x+1)^2).")
    evaluator.multiply_plain_inplace(x_sq_plus_one, plain_four)
    evaluator.multiply(x_sq_plus_one, x_plus_one_sq, encrypted_result)
    print("    + size of encrypted_result: {}".format(encrypted_result.size()))
    evaluator.relinearize_inplace(encrypted_result, relin_keys)
    print("    + size of encrypted_result (after relinearization): {}".format(
        encrypted_result.size()))
    print("    + noise budget in encrypted_result: {} bits".format(
        decryptor.invariant_noise_budget(encrypted_result)))

    print("NOTE: Notice the increase in remaining noise budget.")

    #Relinearization clearly improved our noise consumption. We have still plenty
    #of noise budget left, so we can expect the correct answer when decrypting.
    print("Decrypt encrypted_result (4(x^2+1)(x+1)^2).")
    decryptor.decrypt(encrypted_result, decrypted_result)
    print("    + decryption of 4(x^2+1)(x+1)^2 = 0x{}  ...... Correct.".format(
        decrypted_result.to_string()))
Exemple #2
0
def example_basics_ii():
    print_example_banner("Example: Basics II")

    # In this example we explain what relinearization is, how to use it, and how
    # it affects noise budget consumption.

    # First we set the parameters, create a SEALContext, and generate the public
    # and secret keys. We use slightly larger parameters than be fore to be able
    # to do more homomorphic multiplications.
    parms = EncryptionParameters()
    parms.set_poly_modulus("1x^8192 + 1")

    # The default coefficient modulus consists of the following primes:

    #     0x7fffffffba0001,
    #     0x7fffffffaa0001,
    #     0x7fffffff7e0001,
    #     0x3fffffffd60001.

    # The total size is 219 bits.
    parms.set_coeff_modulus(seal.coeff_modulus_128(8192))
    parms.set_plain_modulus(1 << 10)

    context = SEALContext(parms)
    print_parameters(context)

    keygen = KeyGenerator(context)
    public_key = keygen.public_key()
    secret_key = keygen.secret_key()

    # We also set up an Encryptor, Evaluator, and Decryptor here. We will
    # encrypt polynomials directly in this example, so there is no need for
    # an encoder.
    encryptor = Encryptor(context, public_key)
    evaluator = Evaluator(context)
    decryptor = Decryptor(context, secret_key)

    # There are actually two more types of keys in SEAL: `evaluation keys' and
    # `Galois keys'. Here we will discuss evaluation keys, and Galois keys will
    # be discussed later in example_batching().

    # In SEAL, a valid ciphertext consists of two or more polynomials with
    # coefficients integers modulo the product of the primes in coeff_modulus.
    # The current size of a ciphertext can be found using Ciphertext::size().
    # A freshly encrypted ciphertext always has size 2.
    #plain1 = Plaintext("1x^2 + 2x^1 + 3")
    plain1 = Plaintext("1x^2 + 2x^1 + 3")
    encrypted = Ciphertext()

    print("")
    print("Encrypting " + plain1.to_string() + ": ")
    encryptor.encrypt(plain1, encrypted)
    print("Done")
    print("Size of a fresh encryption: " + (str)(encrypted.size()))
    print("Noise budget in fresh encryption: " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    # Homomorphic multiplication results in the output ciphertext growing in size.
    # More precisely, if the input ciphertexts have size M and N, then the output
    # ciphertext after homomorphic multiplication will have size M+N-1. In this
    # case we square encrypted twice to observe this growth (also observe noise
    # budget consumption).
    evaluator.square(encrypted)
    print("Size after squaring: " + (str)(encrypted.size()))
    print("Noise budget after squaring: " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")
    plain2 = Plaintext()
    decryptor.decrypt(encrypted, plain2)
    print("Second power: " + plain2.to_string())

    evaluator.square(encrypted)
    print("Size after squaring: " + (str)(encrypted.size()))
    print("Noise budget after squaring: " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    # It does not matter that the size has grown -- decryption works as usual.
    # Observe from the print-out that the coefficients in the plaintext have
    # grown quite large. One more squaring would cause some of them to wrap
    # around plain_modulus (0x400), and as a result we would no longer obtain
    # the expected result as an integer-coefficient polynomial. We can fix this
    # problem to some extent by increasing plain_modulus. This would make sense,
    # since we still have plenty of noise budget left.
    plain2 = Plaintext()
    decryptor.decrypt(encrypted, plain2)
    print("Fourth power: " + plain2.to_string())

    # The problem here is that homomorphic operations on large ciphertexts are
    # computationally much more costly than on small ciphertexts. Specifically,
    # homomorphic multiplication on input ciphertexts of size M and N will require
    # O(M*N) polynomial multiplications to be performed, and an addition will
    # require O(M+N) additions. Relinearization reduces the size of the ciphertexts
    # after multiplication back to the initial size (2). Thus, relinearizing one
    # or both inputs before the next multiplication, or e.g. before serializing the
    # ciphertexts, can have a huge positive impact on performance.

    # Another problem is that the noise budget consumption in multiplication is
    # bigger when the input ciphertexts sizes are bigger. In a complicated
    # computation the contribution of the sizes to the noise budget consumption
    # can actually become the dominant term. We will point this out again below
    # once we get to our example.

    # Relinearization itself has both a computational cost and a noise budget cost.
    # These both depend on a parameter called `decomposition bit count', which can
    # be any integer at least 1 [dbc_min()] and at most 60 [dbc_max()]. A large
    # decomposition bit count makes relinearization fast, but consumes more noise
    # budget. A small decomposition bit count can make relinearization slower, but
    # might not change the noise budget by any observable amount.

    # Relinearization requires a special type of key called `evaluation keys'.
    # These can be created by the KeyGenerator for any decomposition bit count.
    # To relinearize a ciphertext of size M >= 2 back to size 2, we actually need
    # M-2 evaluation keys. Attempting to relinearize a too large ciphertext with
    # too few evaluation keys will result in an exception being thrown.

    # We repeat our computation, but this time relinearize after both squarings.
    # Since our ciphertext never grows past size 3 (we relinearize after every
    # multiplication), it suffices to generate only one evaluation key.

    # First, we need to create evaluation keys. We use a decomposition bit count
    # of 16 here, which can be thought of as quite small.
    ev_keys16 = EvaluationKeys()

    # This function generates one single evaluation key. Another overload takes
    # the number of keys to be generated as an argument, but one is all we need
    # in this example (see above).
    keygen.generate_evaluation_keys(16, ev_keys16)

    print("")
    print("Encrypting " + plain1.to_string() + ": ")
    encryptor.encrypt(plain1, encrypted)
    print("Done")
    print("Size of a fresh encryption: " + (str)(encrypted.size()))
    print("Noise budget in fresh encryption: " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    evaluator.square(encrypted)
    print("Size after squaring: " + (str)(encrypted.size()))
    print("Noise budget after squaring: " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    evaluator.relinearize(encrypted, ev_keys16)
    print("Size after relinearization: " + (str)(encrypted.size()))
    print("Noise budget after relinearizing (dbs = " +
          (str)(ev_keys16.decomposition_bit_count()) + "): " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    evaluator.square(encrypted)
    print("Size after second squaring: " + (str)(encrypted.size()) + " bits")
    print("Noise budget after second squaring: " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    evaluator.relinearize(encrypted, ev_keys16)
    print("Size after relinearization: " + (str)(encrypted.size()))
    print("Noise budget after relinearizing (dbs = " +
          (str)(ev_keys16.decomposition_bit_count()) + "): " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    decryptor.decrypt(encrypted, plain2)
    print("Fourth power: " + plain2.to_string())

    # Of course the result is still the same, but this time we actually
    # used less of our noise budget. This is not surprising for two reasons:

    #     - We used a very small decomposition bit count, which is why
    #       relinearization itself did not consume the noise budget by any
    #       observable amount;
    #     - Since our ciphertext sizes remain small throughout the two
    #       squarings, the noise budget consumption rate in multiplication
    #       remains as small as possible. Recall from above that operations
    #       on larger ciphertexts actually cause more noise growth.

    # To make matters even more clear, we repeat the computation a third time,
    # now using the largest possible decomposition bit count (60). We are not
    # measuring the time here, but relinearization with these evaluation keys
    # is significantly faster than with ev_keys16.
    ev_keys60 = EvaluationKeys()
    keygen.generate_evaluation_keys(seal.dbc_max(), ev_keys60)

    print("")
    print("Encrypting " + plain1.to_string() + ": ")
    encryptor.encrypt(plain1, encrypted)
    print("Done")
    print("Size of a fresh encryption: " + (str)(encrypted.size()))
    print("Noise budget in fresh encryption: " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    evaluator.square(encrypted)
    print("Size after squaring: " + (str)(encrypted.size()))
    print("Noise budget after squaring: " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")
    evaluator.relinearize(encrypted, ev_keys60)
    print("Size after relinearization: " + (str)(encrypted.size()))
    print("Noise budget after relinearizing (dbc = " +
          (str)(ev_keys60.decomposition_bit_count()) + "): " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    evaluator.square(encrypted)
    print("Size after second squaring: " + (str)(encrypted.size()))
    print("Noise budget after second squaring: " +
          (str)(decryptor.invariant_noise_budget) + " bits")
    evaluator.relinearize(encrypted, ev_keys60)
    print("Size after relinearization: " + (str)(encrypted.size()))
    print("Noise budget after relinearizing (dbc = " +
          (str)(ev_keys60.decomposition_bit_count()) + "): " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    decryptor.decrypt(encrypted, plain2)
    print("Fourth power: " + plain2.to_string())

    # Observe from the print-out that we have now used significantly more of our
    # noise budget than in the two previous runs. This is again not surprising,
    # since the first relinearization chops off a huge part of the noise budget.

    # However, note that the second relinearization does not change the noise
    # budget by any observable amount. This is very important to understand when
    # optimal performance is desired: relinearization always drops the noise
    # budget from the maximum (freshly encrypted ciphertext) down to a fixed
    # amount depending on the encryption parameters and the decomposition bit
    # count. On the other hand, homomorphic multiplication always consumes the
    # noise budget from its current level. This is why the second relinearization
    # does not change the noise budget anymore: it is already consumed past the
    # fixed amount determinted by the decomposition bit count and the encryption
    # parameters.

    # We now perform a third squaring and observe an even further compounded
    # decrease in the noise budget. Again, relinearization does not consume the
    # noise budget at this point by any observable amount, even with the largest
    # possible decomposition bit count.
    evaluator.square(encrypted)
    print("Size after third squaring " + (str)(encrypted.size()))
    print("Noise budget after third squaring: " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")
    evaluator.relinearize(encrypted, ev_keys60)
    print("Size after relinearization: " + (str)(encrypted.size()))
    print("Noise budget after relinearizing (dbc = " +
          (str)(ev_keys60.decomposition_bit_count()) + "): " +
          (str)(decryptor.invariant_noise_budget(encrypted)) + " bits")

    decryptor.decrypt(encrypted, plain2)
    print("Eighth power: " + plain2.to_string())