def example_rotation_ckks(): print("Example: Rotation / Rotation in CKKS"); #Rotations in the CKKS scheme work very similarly to rotations in BFV. parms = EncryptionParameters(scheme_type.CKKS) poly_modulus_degree = 8192 parms.set_poly_modulus_degree(poly_modulus_degree) parms.set_coeff_modulus(CoeffModulus.Create( poly_modulus_degree, IntVector([40, 40, 40, 40, 40]))) context = SEALContext.Create(parms) print_parameters(context) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() relin_keys = keygen.relin_keys() gal_keys = keygen.galois_keys() encryptor = Encryptor(context, public_key) evaluator = Evaluator(context) decryptor = Decryptor(context, secret_key) ckks_encoder = CKKSEncoder(context) slot_count = ckks_encoder.slot_count() print("Number of slots: {}".format(slot_count)) step_size = 1.0 / (slot_count - 1) input = DoubleVector(list(map(lambda x: x*step_size, range(0, slot_count)))) print_vector(input) scale = 2.0**50 print("Encode and encrypt.") plain = Plaintext() ckks_encoder.encode(input, scale, plain) encrypted = Ciphertext() encryptor.encrypt(plain, encrypted) rotated = Ciphertext() print("Rotate 2 steps left.") evaluator.rotate_vector(encrypted, 2, gal_keys, rotated) print(" + Decrypt and decode ...... Correct.") decryptor.decrypt(rotated, plain) result = DoubleVector() ckks_encoder.decode(plain, result) print_vector(result)
class SealOps: @classmethod def with_env(cls): parms = EncryptionParameters(scheme_type.CKKS) parms.set_poly_modulus_degree(POLY_MODULUS_DEGREE) parms.set_coeff_modulus( CoeffModulus.Create(POLY_MODULUS_DEGREE, PRIME_SIZE_LIST)) context = SEALContext.Create(parms) keygen = KeyGenerator(context) public_key = keygen.public_key() secret_key = keygen.secret_key() relin_keys = keygen.relin_keys() galois_keys = keygen.galois_keys() return cls(context=context, public_key=public_key, secret_key=secret_key, relin_keys=relin_keys, galois_keys=galois_keys, poly_modulus_degree=POLY_MODULUS_DEGREE, scale=SCALE) def __init__(self, context: SEALContext, scale: float, poly_modulus_degree: int, public_key: PublicKey = None, secret_key: SecretKey = None, relin_keys: RelinKeys = None, galois_keys: GaloisKeys = None): self.scale = scale self.context = context self.encoder = CKKSEncoder(context) self.evaluator = Evaluator(context) self.encryptor = Encryptor(context, public_key) self.decryptor = Decryptor(context, secret_key) self.relin_keys = relin_keys self.galois_keys = galois_keys self.poly_modulus_degree_log = np.log2(poly_modulus_degree) def encrypt(self, matrix: np.array): matrix = Matrix.from_numpy_array(array=matrix) cipher_matrix = CipherMatrix(rows=matrix.rows, cols=matrix.cols) for i in range(matrix.rows): encoded_row = Plaintext() self.encoder.encode(matrix[i], self.scale, encoded_row) self.encryptor.encrypt(encoded_row, cipher_matrix[i]) return cipher_matrix def decrypt(self, cipher_matrix: CipherMatrix) -> Matrix: matrix = Matrix(rows=cipher_matrix.rows, cols=cipher_matrix.cols) for i in range(matrix.rows): row = Vector() encoded_row = Plaintext() self.decryptor.decrypt(cipher_matrix[i], encoded_row) self.encoder.decode(encoded_row, row) matrix[i] = row return matrix def add(self, matrix_a: CipherMatrix, matrix_b: CipherMatrix) -> CipherMatrix: self.validate_same_dimension(matrix_a, matrix_b) result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) for i in range(matrix_a.rows): a_tag, b_tag = self.get_matched_scale_vectors( matrix_a[i], matrix_b[i]) self.evaluator.add(a_tag, b_tag, result_matrix[i]) return result_matrix def add_plain(self, matrix_a: CipherMatrix, matrix_b: np.array) -> CipherMatrix: matrix_b = Matrix.from_numpy_array(matrix_b) self.validate_same_dimension(matrix_a, matrix_b) result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) for i in range(matrix_a.rows): row = matrix_b[i] encoded_row = Plaintext() self.encoder.encode(row, self.scale, encoded_row) self.evaluator.mod_switch_to_inplace(encoded_row, matrix_a[i].parms_id()) self.evaluator.add_plain(matrix_a[i], encoded_row, result_matrix[i]) return result_matrix def multiply_plain(self, matrix_a: CipherMatrix, matrix_b: np.array) -> CipherMatrix: matrix_b = Matrix.from_numpy_array(matrix_b) self.validate_same_dimension(matrix_a, matrix_b) result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) for i in range(matrix_a.rows): row = matrix_b[i] encoded_row = Plaintext() self.encoder.encode(row, self.scale, encoded_row) self.evaluator.mod_switch_to_inplace(encoded_row, matrix_a[i].parms_id()) self.evaluator.multiply_plain(matrix_a[i], encoded_row, result_matrix[i]) return result_matrix def dot_vector(self, a: Ciphertext, b: Ciphertext) -> Ciphertext: result = Ciphertext() self.evaluator.multiply(a, b, result) self.evaluator.relinearize_inplace(result, self.relin_keys) self.vector_sum_inplace(result) self.get_vector_first_element(result) self.evaluator.rescale_to_next_inplace(result) return result def dot_vector_with_plain(self, a: Ciphertext, b: DoubleVector) -> Ciphertext: result = Ciphertext() b_plain = Plaintext() self.encoder.encode(b, self.scale, b_plain) self.evaluator.multiply_plain(a, b_plain, result) self.vector_sum_inplace(result) self.get_vector_first_element(result) self.evaluator.rescale_to_next_inplace(result) return result def get_vector_range(self, vector_a: Ciphertext, i: int, j: int) -> Ciphertext: cipher_range = Ciphertext() one_and_zeros = DoubleVector([0.0 if x < i else 1.0 for x in range(j)]) plain = Plaintext() self.encoder.encode(one_and_zeros, self.scale, plain) self.evaluator.mod_switch_to_inplace(plain, vector_a.parms_id()) self.evaluator.multiply_plain(vector_a, plain, cipher_range) return cipher_range def dot_matrix_with_matrix_transpose(self, matrix_a: CipherMatrix, matrix_b: CipherMatrix): result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) rows_a = matrix_a.rows cols_b = matrix_b.rows for i in range(rows_a): vector_dot_products = [] zeros = Plaintext() for j in range(cols_b): vector_dot_products += [ self.dot_vector(matrix_a[i], matrix_b[j]) ] if j == 0: zero = DoubleVector() self.encoder.encode(zero, vector_dot_products[j].scale(), zeros) self.evaluator.mod_switch_to_inplace( zeros, vector_dot_products[j].parms_id()) self.evaluator.add_plain(vector_dot_products[j], zeros, result_matrix[i]) else: self.evaluator.rotate_vector_inplace( vector_dot_products[j], -j, self.galois_keys) self.evaluator.add_inplace(result_matrix[i], vector_dot_products[j]) for vec in result_matrix: self.evaluator.relinearize_inplace(vec, self.relin_keys) self.evaluator.rescale_to_next_inplace(vec) return result_matrix def dot_matrix_with_plain_matrix_transpose(self, matrix_a: CipherMatrix, matrix_b: np.array): matrix_b = Matrix.from_numpy_array(matrix_b) result_matrix = CipherMatrix(rows=matrix_a.rows, cols=matrix_a.cols) rows_a = matrix_a.rows cols_b = matrix_b.rows for i in range(rows_a): vector_dot_products = [] zeros = Plaintext() for j in range(cols_b): vector_dot_products += [ self.dot_vector_with_plain(matrix_a[i], matrix_b[j]) ] if j == 0: zero = DoubleVector() self.encoder.encode(zero, vector_dot_products[j].scale(), zeros) self.evaluator.mod_switch_to_inplace( zeros, vector_dot_products[j].parms_id()) self.evaluator.add_plain(vector_dot_products[j], zeros, result_matrix[i]) else: self.evaluator.rotate_vector_inplace( vector_dot_products[j], -j, self.galois_keys) self.evaluator.add_inplace(result_matrix[i], vector_dot_products[j]) for vec in result_matrix: self.evaluator.relinearize_inplace(vec, self.relin_keys) self.evaluator.rescale_to_next_inplace(vec) return result_matrix @staticmethod def validate_same_dimension(matrix_a, matrix_b): if matrix_a.rows != matrix_b.rows or matrix_a.cols != matrix_b.cols: raise ArithmeticError("Matrices aren't of the same dimension") def vector_sum_inplace(self, cipher: Ciphertext): rotated = Ciphertext() for i in range(int(self.poly_modulus_degree_log - 1)): self.evaluator.rotate_vector(cipher, pow(2, i), self.galois_keys, rotated) self.evaluator.add_inplace(cipher, rotated) def get_vector_first_element(self, cipher: Ciphertext): one_and_zeros = DoubleVector([1.0]) plain = Plaintext() self.encoder.encode(one_and_zeros, self.scale, plain) self.evaluator.multiply_plain_inplace(cipher, plain) def get_matched_scale_vectors(self, a: Ciphertext, b: Ciphertext) -> (Ciphertext, Ciphertext): a_tag = Ciphertext(a) b_tag = Ciphertext(b) a_index = self.context.get_context_data(a.parms_id()).chain_index() b_index = self.context.get_context_data(b.parms_id()).chain_index() # Changing the mod if required, else just setting the scale if a_index < b_index: self.evaluator.mod_switch_to_inplace(b_tag, a.parms_id()) elif a_index > b_index: self.evaluator.mod_switch_to_inplace(a_tag, b.parms_id()) a_tag.set_scale(self.scale) b_tag.set_scale(self.scale) return a_tag, b_tag