Exemple #1
0
    'val':deepcopy(Mode),
    'Inputs':inputs,
    'Targets':targets,
}

C['val']['loss_color'] = 'r'


C['train']['all_indicies'], C['val']['all_indicies'] = \
    utils.get_train_and_val_indicies(len(C['Targets']),100)
cg("C['val']['all_indicies'] =",len(C['val']['all_indicies']))
cg("C['train']['all_indicies'] =",len(C['train']['all_indicies']))
"""


chain_net = Chain_net()

if A['load_net']:
    #best_path = find_best_net(A['net_path'])
    best_path = most_recent_file_in_folder(A['net_path'])
    cg("Loading net from",best_path)
    chain_net.load_state_dict(torch.load(best_path))

#chain_net = torch.nn.DataParallel(chain_net)
chain_net.to(device)
cg('chain_net.to(device)')
criterion = nn.MSELoss()
optimizer = optim.Adam(chain_net.parameters(), A['learning_rate']) #, lr=0.001)

os_system('mkdir -p',A['net_path'])
Exemple #2
0
    'val': deepcopy(Mode),
    'Inputs': inputs,
    'Targets': targets,
}

C['val']['loss_color'] = 'r'


C['train']['all_indicies'], C['val']['all_indicies'] = \
    utils.get_train_and_val_indicies(len(C['Targets']),100)
cg("C['val']['all_indicies'] =", len(C['val']['all_indicies']))
cg("C['train']['all_indicies'] =", len(C['train']['all_indicies']))

modes = ['train', 'val']

chain_net = Chain_net()

if A['load_net']:
    #best_path = find_best_net(A['net_path'])
    best_path = most_recent_file_in_folder(A['net_path'])
    cg("Loading net from", best_path)
    chain_net.load_state_dict(torch.load(best_path))

#chain_net = torch.nn.DataParallel(chain_net)
chain_net.to(device)

criterion = nn.MSELoss()
optimizer = optim.Adam(chain_net.parameters(),
                       A['learning_rate'])  #, lr=0.001)

os_system('mkdir -p', A['net_path'])
Exemple #3
0
    A[m] = deepcopy(Mode)

A['data_file_paths'] = sggo(A['data_path'], '*.h5py')
A['train']['opened_data_files'] = []
A['val']['opened_data_files'] = []
for f in A['data_file_paths']:
    for mode in ['val', 'train']:
        if mode + '_' in fname(f):
            A[mode]['opened_data_files'].append(h5r(f))

A['val']['loss_color'] = 'r'
A['train']['loss_color'] = 'b'
A['val']['current_index'] = -1
A['train']['current_index'] = -1

chain_net_original = Chain_net()

backend = 'fbgemm'
#backend = 'FakeQuantize'

chain_net_original.train()
chain_net_original.qconfig = torch.quantization.get_default_qat_qconfig(
    backend)

chain_net_original.aa.qconfig = torch.quantization.get_default_qat_qconfig(
    backend)
chain_net_original.aa.d.qconfig = torch.quantization.get_default_qat_qconfig(
    backend)
chain_net_original.aa.e.qconfig = torch.quantization.get_default_qat_qconfig(
    backend)