def calcMass(options,args): if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=True) elif options.select.lower() == 'fakebimodal': raw= read_gdwarfs(_FAKEBIMODALGDWARFFILE, logg=True,ebv=True,sn=True) options.select= 'all' else: raw= read_gdwarfs(logg=True,ebv=True,sn=True) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=True) else: raw= read_kdwarfs(logg=True,ebv=True,sn=True) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) #Savefile if os.path.exists(args[0]):#Load savefile savefile= open(args[0],'rb') mass= pickle.load(savefile) ii= pickle.load(savefile) jj= pickle.load(savefile) savefile.close() else: mass= [] ii, jj= 0, 0 #parameters if os.path.exists(args[1]):#Load initial savefile= open(args[1],'rb') fits= pickle.load(savefile) savefile.close() else: print "Error: must provide parameters of best fits" print "Returning ..." return None #Sample? if options.mcsample: if ii < len(binned.fehedges)-1 and jj < len(binned.afeedges)-1: print "First do all of the best-fit mass estimates ..." print "Returning ..." return None if os.path.exists(args[2]): #Load savefile savefile= open(args[2],'rb') masssamples= pickle.load(savefile) ii= pickle.load(savefile) jj= pickle.load(savefile) savefile.close() else: masssamples= [] ii, jj= 0, 0 if os.path.exists(args[3]): #Load savefile savefile= open(args[3],'rb') denssamples= pickle.load(savefile) savefile.close() else: print "If mcsample you need to provide the file with the density samples ..." print "Returning ..." return None #Set up model etc. if options.model.lower() == 'hwr': densfunc= _HWRDensity elif options.model.lower() == 'twodblexp': densfunc= _TwoDblExpDensity like_func= _HWRLikeMinus pdf_func= _HWRLike if options.sample.lower() == 'g': colorrange=[0.48,0.55] elif options.sample.lower() == 'k': colorrange=[0.55,0.75] #Load selection function plates= numpy.array(list(set(list(raw.plate))),dtype='int') #Only load plates that we use print "Using %i plates, %i stars ..." %(len(plates),len(raw)) sf= segueSelect(plates=plates,type_faint='tanhrcut', sample=options.sample,type_bright='tanhrcut', sn=True,select=options.select) platelb= bovy_coords.radec_to_lb(sf.platestr.ra,sf.platestr.dec, degree=True) indx= [not 'faint' in name for name in sf.platestr.programname] platebright= numpy.array(indx,dtype='bool') indx= ['faint' in name for name in sf.platestr.programname] platefaint= numpy.array(indx,dtype='bool') if options.sample.lower() == 'g': grmin, grmax= 0.48, 0.55 rmin,rmax= 14.5, 20.2 #Run through the bins while ii < len(binned.fehedges)-1: while jj < len(binned.afeedges)-1: data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: if options.mcsample: masssamples.append(None) else: mass.append(None) jj+= 1 if jj == len(binned.afeedges)-1: jj= 0 ii+= 1 break continue print binned.feh(ii), binned.afe(jj), len(data) fehindx= binned.fehindx(binned.feh(ii)) afeindx= binned.afeindx(binned.afe(jj)) #set up feh and color feh= binned.feh(ii) fehrange= [binned.fehedges[ii],binned.fehedges[ii+1]] #FeH fehdist= DistSpline(*numpy.histogram(data.feh,bins=5, range=fehrange), xrange=fehrange,dontcuttorange=False) #Color colordist= DistSpline(*numpy.histogram(data.dered_g\ -data.dered_r, bins=9,range=colorrange), xrange=colorrange) #Age marginalization afe= binned.afe(jj) if options.simpleage: agemin, agemax= 0.5, 10. else: if afe > 0.25: agemin, agemax= 7.,10. else: agemin,agemax= 1.,8. if options.mcsample: #Loop over samples thissamples= denssamples[afeindx+fehindx*binned.npixafe()] if options.nsamples < len(thissamples): print "Taking random ..." #Random permutation thissamples= numpy.random.permutation(thissamples)[0:options.nsamples] thismasssamples= [] print "WARNING: DISK MASS IN CALCMASS ONLY FOR G COLORS" for kk in range(len(thissamples)): thisparams= thissamples[kk] thismasssamples.append(predictDiskMass(densfunc, thisparams,sf, colordist,fehdist, fehrange[0], fehrange[1],feh, data,0.45, 0.58, agemin,agemax, normalize=options.normalize, imfmodel=options.imfmodel)) #Print some stuff print numpy.mean(numpy.array(thismasssamples)), numpy.std(numpy.array(thismasssamples)) masssamples.append(thismasssamples) else: thisparams= fits[afeindx+fehindx*binned.npixafe()] print "WARNING: DISK MASS IN CALCMASS ONLY FOR G COLORS" mass.append(predictDiskMass(densfunc, thisparams,sf, colordist,fehdist, fehrange[0], fehrange[1],feh, data,0.45, 0.58, agemin,agemax, normalize=options.normalize, imfmodel=options.imfmodel)) print mass[-1] jj+= 1 if jj == len(binned.afeedges)-1: jj= 0 ii+= 1 if options.mcsample: save_pickles(args[2],masssamples,ii,jj) else: save_pickles(args[0],mass,ii,jj) if jj == 0: #this means we've reset the counter break if options.mcsample: save_pickles(args[2],masssamples,ii,jj) else: save_pickles(args[0],mass,ii,jj) return None
def plotPixelFitVel(options,args): if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=options.snmin, distfac=options.distfac) else: raw= read_gdwarfs(logg=True,ebv=True,sn=options.snmin, distfac=options.distfac) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=options.snmin, distfac=options.distfac) else: raw= read_kdwarfs(logg=True,ebv=True,sn=options.snmin, distfac=options.distfac) if not options.bmin is None: #Cut on |b| raw= raw[(numpy.fabs(raw.b) > options.bmin)] #print len(raw) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) if options.tighten: tightbinned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe, fehmin=-1.6,fehmax=0.5,afemin=-0.05, afemax=0.55) else: tightbinned= binned #Savefile if os.path.exists(args[0]):#Load savefile savefile= open(args[0],'rb') fits= pickle.load(savefile) savefile.close() #Now plot #Run through the pixels and gather if options.type.lower() == 'afe' or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': plotthis= [] else: plotthis= numpy.zeros((tightbinned.npixfeh(),tightbinned.npixafe())) #ndata= 0 #maxndata= 0 for ii in range(tightbinned.npixfeh()): for jj in range(tightbinned.npixafe()): data= binned(tightbinned.feh(ii),tightbinned.afe(jj)) fehindx= binned.fehindx(tightbinned.feh(ii))#Map onto regular binning afeindx= binned.afeindx(tightbinned.afe(jj)) if afeindx+fehindx*binned.npixafe() >= len(fits): if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue thisfit= fits[afeindx+fehindx*binned.npixafe()] if thisfit is None: if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue if len(data) < options.minndata: if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue #if len(data) > maxndata: maxndata= len(data) #ndata+= len(data) if options.model.lower() == 'hwr': if options.type == 'sz': plotthis[ii,jj]= numpy.exp(thisfit[1]) elif options.type == 'sz2': plotthis[ii,jj]= numpy.exp(2.*thisfit[1]) elif options.type == 'hs': plotthis[ii,jj]= numpy.exp(thisfit[4]) elif options.type == 'hsm': plotthis[ii,jj]= numpy.exp(-thisfit[4]) elif options.type == 'pbad': plotthis[ii,jj]= thisfit[0] elif options.type == 'slopes': plotthis[ii,jj]= thisfit[2] elif options.type == 'slope': plotthis[ii,jj]= thisfit[2] elif options.type == 'chi2dof': plotthis[ii,jj]= thisfit[6] elif options.type.lower() == 'afe' \ or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': plotthis.append([tightbinned.feh(ii), tightbinned.afe(jj), numpy.exp(thisfit[1]), numpy.exp(thisfit[3]), len(data)]) #print ndata #print maxndata #Set up plot #print numpy.nanmin(plotthis), numpy.nanmax(plotthis) if options.type == 'sz': if options.vr: vmin, vmax= 40.,80. zlabel= r'$\sigma_R(z = \langle z \rangle)\ [\mathrm{km\ s}^{-1}]$' else: vmin, vmax= 10.,60. zlabel= r'$\sigma_z(z_{1/2})\ [\mathrm{km\ s}^{-1}]$' elif options.type == 'sz2': if options.vr: vmin, vmax= 40.**2.,80.**2. zlabel= r'$\sigma_R^2(z= \langle z \rangle)\ [\mathrm{km\ s}^{-1}]$' else: vmin, vmax= 15.**2.,50.**2. zlabel= r'$\sigma_z^2(z= \langle z \rangle)\ [\mathrm{km\ s}^{-1}]$' elif options.type == 'hs': if options.vr: vmin, vmax= 3.,25. zlabel= r'$R_\sigma\ [\mathrm{kpc}]$' else: vmin, vmax= 3.,15. zlabel= r'$h_\sigma\ [\mathrm{kpc}]$' elif options.type == 'hsm': if options.vr: vmin, vmax= 0.,0.3 zlabel= r'$R^{-1}_\sigma\ [\mathrm{kpc}^{-1}]$' else: vmin, vmax= 0.,0.3 zlabel= r'$R^{-1}_\sigma\ [\mathrm{kpc}^{-1}]$' elif options.type == 'slope': vmin, vmax= -5.,5. zlabel= r'$\frac{\mathrm{d} \sigma_z}{\mathrm{d} z}(z_{1/2})\ [\mathrm{km\ s}^{-1}\ \mathrm{kpc}^{-1}]$' elif options.type == 'pbad': vmin, vmax= 0.,0.1 zlabel= r'$P_{\mathrm{bad}}$' elif options.type == 'chi2dof': vmin, vmax= 0.5,1.5 zlabel= r'$\chi^2/\mathrm{dof}$' elif options.type == 'afe': vmin, vmax= 0.05,.4 zlabel=r'$[\alpha/\mathrm{Fe}]$' elif options.type == 'feh': vmin, vmax= -1.5,0. zlabel=r'$[\mathrm{Fe/H}]$' elif options.type == 'fehafe': vmin, vmax= -.7,.7 zlabel=r'$[\mathrm{Fe/H}]-[\mathrm{Fe/H}]_{1/2}([\alpha/\mathrm{Fe}])$' elif options.type == 'afefeh': vmin, vmax= -.15,.15 zlabel=r'$[\alpha/\mathrm{Fe}]-[\alpha/\mathrm{Fe}]_{1/2}([\mathrm{Fe/H}])$' if options.tighten: xrange=[-1.6,0.5] yrange=[-0.05,0.55] else: xrange=[-2.,0.6] yrange=[-0.1,0.6] if options.type.lower() == 'afe' or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': print "Update!! Never used until now (afe etc. type fitting is in plotsz2hz" return None bovy_plot.bovy_print(fig_height=3.87,fig_width=5.) #Gather hR and hz hz, hr,afe, feh, ndata= [], [], [], [], [] for ii in range(len(plotthis)): hz.append(plotthis[ii][2]) hr.append(plotthis[ii][3]) afe.append(plotthis[ii][1]) feh.append(plotthis[ii][0]) ndata.append(plotthis[ii][4]) hz= numpy.array(hz) hr= numpy.array(hr) afe= numpy.array(afe) feh= numpy.array(feh) ndata= numpy.array(ndata) #Process ndata ndata= ndata**.5 ndata= ndata/numpy.median(ndata)*35. #ndata= numpy.log(ndata)/numpy.log(numpy.median(ndata)) #ndata= (ndata-numpy.amin(ndata))/(numpy.amax(ndata)-numpy.amin(ndata))*25+12. if options.type.lower() == 'afe': plotc= afe elif options.type.lower() == 'feh': plotc= feh elif options.type.lower() == 'afefeh': #Go through the bins to determine whether feh is high or low for this alpha plotc= numpy.zeros(len(afe)) for ii in range(tightbinned.npixfeh()): fehbin= ii data= tightbinned.data[(tightbinned.data.feh > tightbinned.fehedges[fehbin])\ *(tightbinned.data.feh <= tightbinned.fehedges[fehbin+1])] medianafe= numpy.median(data.afe) for jj in range(len(afe)): if feh[jj] == tightbinned.feh(ii): plotc[jj]= afe[jj]-medianafe else: #Go through the bins to determine whether feh is high or low for this alpha plotc= numpy.zeros(len(feh)) for ii in range(tightbinned.npixafe()): afebin= ii data= tightbinned.data[(tightbinned.data.afe > tightbinned.afeedges[afebin])\ *(tightbinned.data.afe <= tightbinned.afeedges[afebin+1])] medianfeh= numpy.median(data.feh) for jj in range(len(feh)): if afe[jj] == tightbinned.afe(ii): plotc[jj]= feh[jj]-medianfeh yrange= [150,1200] xrange= [1.2,5.] bovy_plot.bovy_plot(hr,hz,s=ndata,c=plotc, cmap='jet', ylabel=r'$\mathrm{vertical\ scale\ height\ [pc]}$', xlabel=r'$\mathrm{radial\ scale\ length\ [kpc]}$', clabel=zlabel, xrange=xrange,yrange=yrange, vmin=vmin,vmax=vmax, scatter=True,edgecolors='none', colorbar=True) elif options.type.lower() == 'slopes': bovy_plot.bovy_print() bovy_plot.bovy_hist(plotthis.flatten(), range=[-5.,5.], bins=11, histtype='step', color='k', xlabel=r'$\sigma_z(z)\ \mathrm{slope\ [km\ s}^{-1}\ \mathrm{kpc}^{-1}]$') else: bovy_plot.bovy_print() bovy_plot.bovy_dens2d(plotthis.T,origin='lower',cmap='jet', interpolation='nearest', xlabel=r'$[\mathrm{Fe/H}]$', ylabel=r'$[\alpha/\mathrm{Fe}]$', zlabel=zlabel, xrange=xrange,yrange=yrange, vmin=vmin,vmax=vmax, contours=False, colorbar=True,shrink=0.78) if options.observed: bovy_plot.bovy_text(r'$\mathrm{observed}$', top_right=True,size=18.) bovy_plot.bovy_end_print(options.plotfile) return None
def plotMass(options,args): if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=True) else: raw= read_gdwarfs(logg=True,ebv=True,sn=True) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=True) else: raw= read_kdwarfs(logg=True,ebv=True,sn=True) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) if options.tighten: tightbinned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe, fehmin=-1.6,fehmax=0.5,afemin=-0.05, afemax=0.55) else: tightbinned= binned #Savefile if os.path.exists(args[0]):#Load savefile savefile= open(args[0],'rb') mass= pickle.load(savefile) ii= pickle.load(savefile) jj= pickle.load(savefile) savefile.close() else: mass= [] ii, jj= 0, 0 #parameters if os.path.exists(args[1]):#Load initial savefile= open(args[1],'rb') fits= pickle.load(savefile) savefile.close() else: print "Error: must provide parameters of best fits" print "Returning ..." return None #Mass uncertainties are in savefile3 if len(args) > 2 and os.path.exists(args[2]): savefile= open(args[2],'rb') masssamples= pickle.load(savefile) savefile.close() masserrors= True else: masssamples= None masserrors= False if len(args) > 3 and os.path.exists(args[3]): #Load savefile savefile= open(args[3],'rb') denssamples= pickle.load(savefile) savefile.close() denserrors= True else: denssamples= None denserrors= False if len(args) > 4 and os.path.exists(args[4]):#Load savefile savefile= open(args[4],'rb') velfits= pickle.load(savefile) savefile.close() velfitsLoaded= True else: velfitsLoaded= False if len(args) > 5 and os.path.exists(args[5]): savefile= open(args[5],'rb') velsamples= pickle.load(savefile) savefile.close() velerrors= True else: velsamples= None velerrors= False #Now plot #Run through the pixels and gather if options.type.lower() == 'afe' or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': plotthis= [] else: plotthis= numpy.zeros((tightbinned.npixfeh(),tightbinned.npixafe())) if denserrors: errors= [] for ii in range(tightbinned.npixfeh()): for jj in range(tightbinned.npixafe()): data= binned(tightbinned.feh(ii),tightbinned.afe(jj)) fehindx= binned.fehindx(tightbinned.feh(ii))#Map onto regular binning afeindx= binned.afeindx(tightbinned.afe(jj)) if afeindx+fehindx*binned.npixafe() >= len(fits): if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue thismass= mass[afeindx+fehindx*binned.npixafe()] if masserrors: thismasssamples= masssamples[afeindx+fehindx*binned.npixafe()] else: thismasssamples= None thisfit= fits[afeindx+fehindx*binned.npixafe()] if denserrors: thisdenssamples= denssamples[afeindx+fehindx*binned.npixafe()] else: thisdenssamples= None if velfitsLoaded: thisvelfit= velfits[afeindx+fehindx*binned.npixafe()] if velerrors: thisvelsamples= velsamples[afeindx+fehindx*binned.npixafe()] if thisfit is None: if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue if len(data) < options.minndata: if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue if options.type == 'mass': if not options.distzmin is None or not options.distzmax is None: if options.distzmin is None and not options.distzmax is None: thismass*= (1.-numpy.exp(-options.distzmax/numpy.exp(thisfit[0])/1000.)) elif not options.distzmin is None and options.distzmax is None: thismass*= numpy.exp(-options.distzmin/numpy.exp(thisfit[0])/1000.) else: thismass*= (numpy.exp(-options.distzmin/numpy.exp(thisfit[0])/1000.)-numpy.exp(-options.distzmax/numpy.exp(thisfit[0])/1000.)) if options.logmass: plotthis[ii,jj]= numpy.log10(thismass/10**6.) else: plotthis[ii,jj]= thismass/10**6. elif options.type == 'nstars': if options.logmass: plotthis[ii,jj]= numpy.log10(len(data)) else: plotthis[ii,jj]= len(data) elif options.model.lower() == 'hwr': if options.type == 'hz': plotthis[ii,jj]= numpy.exp(thisfit[0])*1000. elif options.type == 'hr': plotthis[ii,jj]= numpy.exp(thisfit[1]) elif options.type.lower() == 'afe' \ or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': plotthis.append([tightbinned.feh(ii), tightbinned.afe(jj), numpy.exp(thisfit[0])*1000., numpy.exp(thisfit[1]), len(data), thismass/10.**6., thismasssamples]) if denserrors: theseerrors= [] thesesamples= denssamples[afeindx+fehindx*binned.npixafe()] if options.model.lower() == 'hwr': for kk in [0,1]: xs= numpy.array([s[kk] for s in thesesamples]) theseerrors.append(0.5*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) errors.append(theseerrors) if velfitsLoaded: if options.velmodel.lower() == 'hwr': plotthis[-1].extend([numpy.exp(thisvelfit[1]), numpy.exp(thisvelfit[4]), thisvelfit[2], thisvelfit[3]]) if velerrors: theseerrors= [] thesesamples= velsamples[afeindx+fehindx*binned.npixafe()] for kk in [1,4]: xs= numpy.array([s[kk] for s in thesesamples]) theseerrors.append(0.5*(numpy.exp(numpy.mean(xs))-numpy.exp(numpy.mean(xs)-numpy.std(xs))-numpy.exp(numpy.mean(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) xs= numpy.array([s[4] for s in thesesamples]) theseerrors.append(0.5*(numpy.exp(-numpy.mean(xs))-numpy.exp(numpy.mean(-xs)-numpy.std(-xs))-numpy.exp(numpy.mean(-xs))+numpy.exp(numpy.mean(-xs)+numpy.std(-xs)))) errors[-1].extend(theseerrors) #Set up plot #print numpy.nanmin(plotthis), numpy.nanmax(plotthis) if options.type == 'mass': if options.logmass: vmin, vmax= numpy.log10(0.01), numpy.log10(2.) zlabel=r'$\log_{10} \Sigma(R_0)\ [M_{\odot}\ \mathrm{pc}^{-2}]$' else: vmin, vmax= 0.,1. zlabel=r'$\Sigma(R_0)\ [M_{\odot}\ \mathrm{pc}^{-2}]$' if not options.distzmin is None or not options.distzmax is None: vmin, vmax= None, None title=r'$\mathrm{mass\ weighted}$' elif options.type == 'nstars': if options.logmass: vmin, vmax= 2., 3. zlabel=r'$\log_{10} \mathrm{raw\ number\ of\ G}$-$\mathrm{type\ dwarfs}$' else: vmin, vmax= 100.,1000. zlabel=r'$\mathrm{raw\ number\ of\ G}$-$\mathrm{type\ dwarfs}$' title= r'$\mathrm{raw\ sample\ counts}$' elif options.type == 'afe': vmin, vmax= 0.0,.5 zlabel=r'$[\alpha/\mathrm{Fe}]$' elif options.type == 'feh': vmin, vmax= -1.5,0. zlabel=r'$[\mathrm{Fe/H}]$' elif options.type == 'fehafe': vmin, vmax= -.7,.7 zlabel=r'$[\mathrm{Fe/H}]-[\mathrm{Fe/H}]_{1/2}([\alpha/\mathrm{Fe}])$' elif options.type == 'afefeh': vmin, vmax= -.15,.15 zlabel=r'$[\alpha/\mathrm{Fe}]-[\alpha/\mathrm{Fe}]_{1/2}([\mathrm{Fe/H}])$' if options.tighten: xrange=[-1.6,0.5] yrange=[-0.05,0.55] else: xrange=[-2.,0.6] yrange=[-0.1,0.6] if options.type.lower() == 'afe' or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': bovy_plot.bovy_print(fig_height=3.87,fig_width=5.) #Gather hR and hz sz_err, sz, hz_err, hr_err, mass_err, mass, hz, hr,afe, feh, ndata= [], [], [], [], [], [], [], [], [], [], [] for ii in range(len(plotthis)): if denserrors: hz_err.append(errors[ii][0]*1000.) hr_err.append(errors[ii][1]) mass.append(plotthis[ii][5]) hz.append(plotthis[ii][2]) hr.append(plotthis[ii][3]) afe.append(plotthis[ii][1]) feh.append(plotthis[ii][0]) ndata.append(plotthis[ii][4]) if velfitsLoaded: sz.append(plotthis[ii][7]) if velerrors: sz_err.append(errors[ii][2]) if masserrors: mass_err.append(numpy.std(numpy.array(plotthis[ii][6])/10.**6.)) """ if options.logmass: mass_err.append(numpy.std(numpy.log10(numpy.array(plotthis[ii][6])/10.**6.))) else: mass_err.append(numpy.std(numpy.array(plotthis[ii][6])/10.**6.)) """ if denserrors: hz_err= numpy.array(hz_err) hr_err= numpy.array(hr_err) if velfitsLoaded: sz= numpy.array(sz) if velerrors: sz_err= numpy.array(sz_err) mass= numpy.array(mass) if masserrors: mass_err= numpy.array(mass_err) hz= numpy.array(hz) hr= numpy.array(hr) afe= numpy.array(afe) feh= numpy.array(feh) ndata= numpy.array(ndata) #Process ndata ndata= ndata**.5 ndata= ndata/numpy.median(ndata)*35. #ndata= numpy.log(ndata)/numpy.log(numpy.median(ndata)) #ndata= (ndata-numpy.amin(ndata))/(numpy.amax(ndata)-numpy.amin(ndata))*25+12. if options.type.lower() == 'afe': plotc= afe elif options.type.lower() == 'feh': plotc= feh elif options.type.lower() == 'afefeh': #Go through the bins to determine whether feh is high or low for this alpha plotc= numpy.zeros(len(afe)) for ii in range(tightbinned.npixfeh()): fehbin= ii data= tightbinned.data[(tightbinned.data.feh > tightbinned.fehedges[fehbin])\ *(tightbinned.data.feh <= tightbinned.fehedges[fehbin+1])] medianafe= numpy.median(data.afe) for jj in range(len(afe)): if feh[jj] == tightbinned.feh(ii): plotc[jj]= afe[jj]-medianafe else: #Go through the bins to determine whether feh is high or low for this alpha plotc= numpy.zeros(len(feh)) for ii in range(tightbinned.npixafe()): afebin= ii data= tightbinned.data[(tightbinned.data.afe > tightbinned.afeedges[afebin])\ *(tightbinned.data.afe <= tightbinned.afeedges[afebin+1])] medianfeh= numpy.median(data.feh) for jj in range(len(feh)): if afe[jj] == tightbinned.afe(ii): plotc[jj]= feh[jj]-medianfeh xrange= [150,1200] if options.cumul: #Print total surface mass and uncertainty totmass= numpy.sum(mass) if options.ploterrors: toterr= numpy.sqrt(numpy.sum(mass_err**2.)) else: toterr= 0. print "Total surface-mass density: %4.1f +/- %4.2f" %(totmass,toterr) ids= numpy.argsort(hz) plotc= plotc[ids] ndata= ndata[ids] mass= mass[ids] mass= numpy.cumsum(mass) hz.sort() ylabel=r'$\mathrm{cumulative}\ \Sigma(R_0)\ [M_{\odot}\ \mathrm{pc}^{-2}]$' if options.logmass: yrange= [0.01,30.] else: yrange= [-0.1,30.] else: if options.logmass: yrange= [0.005*0.13/.07,10.*.13/.07] else: yrange= [-0.1,10.*.13/.07] ylabel=r'$\Sigma_{R_0}(h_z)\ [M_{\odot}\ \mathrm{pc}^{-2}]$' if not options.vstructure and not options.hzhr: if options.hr: ploth= hr plotherr= hr_err xlabel=r'$\mathrm{radial\ scale\ length\ [kpc]}$' xrange= [1.2,4.] bins= 11 elif options.sz: ploth= sz**2. plotherr= 2.*sz_err*sz xlabel=r'$\sigma_z^2\ \mathrm{[km}^2\ \mathrm{s}^{-2}]$' xrange= [12.**2.,50.**2.] ylabel=r'$\Sigma_{R_0}(\sigma^2_z)\ [M_{\odot}\ \mathrm{pc}^{-2}]$' bins= 9 else: ploth= hz plotherr= hz_err xlabel=r'$\mathrm{vertical\ scale\ height}\ h_z\ \mathrm{[pc]}$' xrange= [165,1200] bins= 12 bovy_plot.bovy_plot(ploth,mass*.13/0.07, s=ndata,c=plotc, cmap='jet', xlabel=xlabel, ylabel=ylabel, clabel=zlabel, xrange=xrange,yrange=yrange, vmin=vmin,vmax=vmax, scatter=True,edgecolors='none', colorbar=True,zorder=2, semilogy=options.logmass) if not options.cumul and masserrors and options.ploterrors: colormap = cm.jet for ii in range(len(hz)): pyplot.errorbar(ploth[ii],mass[ii]*.13/0.07, yerr=mass_err[ii]*.13/0.07, color=colormap(_squeeze(plotc[ii], numpy.amax([vmin, numpy.amin(plotc)]), numpy.amin([vmax, numpy.amax(plotc)]))), elinewidth=1.,capsize=3,zorder=0) if not options.cumul and denserrors and options.ploterrors: colormap = cm.jet for ii in range(len(hz)): pyplot.errorbar(ploth[ii],mass[ii]*.13/0.07,xerr=plotherr[ii], color=colormap(_squeeze(plotc[ii], numpy.amax([vmin, numpy.amin(plotc)]), numpy.amin([vmax, numpy.amax(plotc)]))), elinewidth=1.,capsize=3,zorder=0) #Add binsize label bovy_plot.bovy_text(r'$\mathrm{points\ use}\ \Delta [\mathrm{Fe/H}] = 0.1,$'+'\n'+r'$\Delta [\alpha/\mathrm{Fe}] = 0.05\ \mathrm{bins}$', bottom_left=True) #Overplot histogram #ax2 = pyplot.twinx() pyplot.hist(ploth,range=xrange,weights=mass*0.13/0.07,color='k',histtype='step', bins=bins,lw=3.,zorder=10) #Also XD? if options.xd: #Set up data ydata= numpy.zeros((len(hz),1)) if options.sz: ydata[:,0]= numpy.log(sz) else: ydata[:,0]= numpy.log(hz) ycovar= numpy.zeros((len(hz),1)) if options.sz: ycovar[:,0]= sz_err**2./sz**2. else: ycovar[:,0]= hz_err**2./hz**2. #Set up initial conditions xamp= numpy.ones(options.k)/float(options.k) xmean= numpy.zeros((options.k,1)) for kk in range(options.k): xmean[kk,:]= numpy.mean(ydata,axis=0)\ +numpy.random.normal()*numpy.std(ydata,axis=0) xcovar= numpy.zeros((options.k,1,1)) for kk in range(options.k): xcovar[kk,:,:]= numpy.cov(ydata.T) #Run XD print extreme_deconvolution(ydata,ycovar,xamp,xmean,xcovar, weight=mass)*len(hz) print xamp, xmean, xcovar #Plot xs= numpy.linspace(xrange[0],xrange[1],1001) xdys= numpy.zeros(len(xs)) for kk in range(options.k): xdys+= xamp[kk]/numpy.sqrt(2.*numpy.pi*xcovar[kk,0,0])\ *numpy.exp(-0.5*(numpy.log(xs)-xmean[kk,0])**2./xcovar[kk,0,0]) xdys/= xs bovy_plot.bovy_plot(xs,xdys,'-',color='0.5',overplot=True) # ax2.set_yscale('log') # ax2.set_yticklabels('') # if options.hr: # pyplot.ylim(10**-2.,10.**0.) # if options.sz: # pyplot.ylim(10**-5.,10.**-2.5) # else: # pyplot.ylim(10**-5.5,10.**-1.5) # pyplot.xlim(xrange[0],xrange[1]) ax= pyplot.gca() if options.sz: def my_formatter(x, pos): """s^2""" xs= int(round(math.sqrt(x))) return r'$%i^2$' % xs major_formatter = FuncFormatter(my_formatter) ax.xaxis.set_major_formatter(major_formatter) xstep= ax.xaxis.get_majorticklocs() xstep= xstep[1]-xstep[0] ax.xaxis.set_minor_locator(MultipleLocator(xstep/5.)) elif options.hzhr: #Make density plot in hR and hz bovy_plot.scatterplot(hr,hz,'k,', levels=[1.01],#HACK such that outliers aren't plotted cmap='gist_yarg', bins=11, xrange=[1.,7.], yrange=[150.,1200.], ylabel=r'$\mathrm{vertical\ scale\ height\ [pc]}$', xlabel=r'$\mathrm{radial\ scale\ length\ [kpc]}$', onedhists=False, weights=mass) else: #Make an illustrative plot of the vertical structure nzs= 1001 zs= numpy.linspace(200.,3000.,nzs) total= numpy.zeros(nzs) for ii in range(len(hz)): total+= mass[ii]/2./hz[ii]*numpy.exp(-zs/hz[ii]) bovy_plot.bovy_plot(zs,total,color='k',ls='-',lw=3., semilogy=True, xrange=[0.,3200.], yrange=[0.000001,0.02], xlabel=r'$\mathrm{vertical\ height}\ Z$', ylabel=r'$\rho_*(R=R_0,Z)\ [\mathrm{M}_\odot\ \mathrm{pc}^{-3}]$', zorder=10) if options.vbinned: #Bin mhist, edges= numpy.histogram(hz,range=xrange, weights=mass,bins=10) stotal= numpy.zeros(nzs) for ii in range(len(mhist)): hz= (edges[ii+1]+edges[ii])/2. if options.vcumul: if ii == 0.: pstotal= numpy.zeros(nzs)+0.0000001 else: pstotal= copy.copy(stotal) stotal+= mhist[ii]/2./hz*numpy.exp(-zs/hz) pyplot.fill_between(zs,stotal,pstotal, color='%.6f' % (0.25+0.5/(len(mhist)-1)*ii)) else: bovy_plot.bovy_plot([zs[0],zs[-1]], 1.*numpy.array([mhist[ii]/2./hz*numpy.exp(-zs[0]/hz), mhist[ii]/2./hz*numpy.exp(-zs[-1]/hz)]), color='0.5',ls='-',overplot=True, zorder=0) else: colormap = cm.jet for ii in range(len(hz)): bovy_plot.bovy_plot([zs[0],zs[-1]], 100.*numpy.array([mass[ii]/2./hz[ii]*numpy.exp(-zs[0]/hz[ii]), mass[ii]/2./hz[ii]*numpy.exp(-zs[-1]/hz[ii])]), ls='-',overplot=True,alpha=0.5, zorder=0, color=colormap(_squeeze(plotc[ii], numpy.amax([vmin, numpy.amin(plotc)]), numpy.amin([vmax, numpy.amax(plotc)])))) else: bovy_plot.bovy_print() bovy_plot.bovy_dens2d(plotthis.T,origin='lower',cmap='gist_yarg', interpolation='nearest', xlabel=r'$[\mathrm{Fe/H}]$', ylabel=r'$[\alpha/\mathrm{Fe}]$', zlabel=zlabel, xrange=xrange,yrange=yrange, vmin=vmin,vmax=vmax, onedhists=True, contours=False) bovy_plot.bovy_text(title,top_right=True,fontsize=16) if not options.distzmin is None or not options.distzmax is None: if options.distzmin is None: distlabel= r'$|Z| < %i\ \mathrm{pc}$' % int(options.distzmax) elif options.distzmax is None: distlabel= r'$|Z| > %i\ \mathrm{pc}$' % int(options.distzmin) else: distlabel= r'$%i < |Z| < %i\ \mathrm{pc}$' % (int(options.distzmin),int(options.distzmax)) bovy_plot.bovy_text(distlabel,bottom_left=True,fontsize=16) bovy_plot.bovy_end_print(options.plotfile) return None
def readData(metal='rich',sample='G',loggmin=4.2,snmin=15.,select='all'): """select= 'program', 'all', 'fakebimodal'""" if sample.lower() == 'g': if select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=loggmin,ebv=True,sn=snmin) elif select.lower() == 'fakebimodal': raw= read_gdwarfs(_FAKEBIMODALGDWARFFILE, logg=loggmin,ebv=True,sn=snmin) elif select.lower() == 'fakebimodal_allthin': raw= read_gdwarfs(_FAKETHINBIMODALGDWARFFILE, logg=loggmin,ebv=True,sn=snmin) elif select.lower() == 'fakebimodal_allthick': raw= read_gdwarfs(_FAKETHICKBIMODALGDWARFFILE, logg=loggmin,ebv=True,sn=snmin) else: raw= read_gdwarfs(logg=loggmin,ebv=True,sn=snmin) elif sample.lower() == 'k': if select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=loggmin,ebv=True,sn=snmin) else: raw= read_kdwarfs(logg=loggmin,ebv=True,sn=snmin) #Select sample if metal == 'rich': indx= (raw.feh > _APOORFEHRANGE[0])*(raw.feh < _APOORFEHRANGE[1])\ *(raw.afe > _APOORAFERANGE[0])*(raw.afe < _APOORAFERANGE[1]) elif metal == 'richdiag': indx= (raw.feh > _APOORFEHRANGE[0])*(raw.feh < _APOORFEHRANGE[1])\ *(raw.afe > _APOORAFERANGE[0])*(raw.afe < _APOORAFERANGE[1])*\ (raw.afe > (-0.15/0.25*(raw.feh+0.25)+0.1)) elif metal == 'richlowerdiag': indx= (raw.feh > _APOORFEHRANGE[0])*(raw.feh < _APOORFEHRANGE[1])\ *(raw.afe > _APOORAFERANGE[0])*(raw.afe < _APOORAFERANGE[1])*\ (raw.afe <= (-0.15/0.25*(raw.feh+0.25)+0.1)) elif metal == 'poor': indx= (raw.feh > _ARICHFEHRANGE[0])*(raw.feh < _ARICHFEHRANGE[1])\ *(raw.afe > _ARICHAFERANGE[0])*(raw.afe < _ARICHAFERANGE[1]) elif metal == 'poorpoor' or metal == 'poorrich': #Sort on [Fe/H], cut down the middle indx= (raw.feh > _ARICHFEHRANGE[0])*(raw.feh < _ARICHFEHRANGE[1])\ *(raw.afe > _ARICHAFERANGE[0])*(raw.afe < _ARICHAFERANGE[1]) raw= raw[indx] sfeh= sorted(raw.feh) cutfeh= sfeh[len(sfeh)/2] #Round to nearest 0.1 cutfeh= round(10*cutfeh)/10. print "Cutting sample down the middle at %4.2f" % cutfeh if metal == 'poorpoor': indx= (raw.feh < cutfeh) else: indx= (raw.feh >= cutfeh) """ elif metal == 'richpoor' or metal == 'richrich': #Sort on [Fe/H], cut down the middle indx= (raw.feh > _APOORFEHRANGE[0])*(raw.feh < _APOORFEHRANGE[1])\ *(raw.afe > _APOORAFERANGE[0])*(raw.afe < _APOORAFERANGE[1]) raw= raw[indx] sfeh= sorted(raw.feh) cutfeh= sfeh[len(sfeh)/2] #Round to nearest 0.05 cutfeh= round(20*cutfeh)/20. print 'Cutting sample down the middle at %4.2f' % cutfeh if metal == 'richpoor': indx= (raw.feh < cutfeh) else: indx= (raw.feh >= cutfeh) """ elif metal == 'richrich': indx= (raw.feh < _APOORFEHRANGE[1])*(raw.feh > _APOORFEHRANGE[0])\ *(raw.afe > _APOORAFERANGE[0])*(raw.afe < _APOORAFERANGE[1]) elif metal == 'richpoor': indx= (raw.feh < _APOORFEHRANGE[0])*(raw.feh > -0.6)\ *(raw.afe > _APOORAFERANGE[0])*(raw.afe < _APOORAFERANGE[1]) elif metal == 'richpoorest': indx= (raw.feh < -0.6)*(raw.feh > -1.5)\ *(raw.afe > _APOORAFERANGE[0])*(raw.afe < _APOORAFERANGE[1]) elif metal == 'apoorpoor': indx= (raw.feh < _APOORFEHRANGE[1])*(raw.feh > _APOORFEHRANGE[0])\ *(raw.afe > _APOORAFERANGE[0])*(raw.afe < 0.15) elif metal == 'apoorrich': indx= (raw.feh < _APOORFEHRANGE[1])*(raw.feh > _APOORFEHRANGE[0])\ *(raw.afe >= 0.15)*(raw.afe < _APOORAFERANGE[1]) elif metal == 'arichpoor': indx= (raw.feh < _ARICHFEHRANGE[1])*(raw.feh > _ARICHFEHRANGE[0])\ *(raw.afe >= _ARICHAFERANGE[0])*(raw.afe < 0.35) elif metal == 'arichrich': indx= (raw.feh < _ARICHFEHRANGE[1])*(raw.feh > _ARICHFEHRANGE[0])\ *(raw.afe >= 0.35)*(raw.afe < _ARICHAFERANGE[1]) elif metal == 'allrichpoor': indx= (raw.feh > _APOORFEHRANGE[0])*(raw.feh < _APOORFEHRANGE[1])\ *(raw.afe > _APOORAFERANGE[0])*(raw.afe < _APOORAFERANGE[1]) raw1= raw[indx] indx= (raw.feh > _ARICHFEHRANGE[0])*(raw.feh < _ARICHFEHRANGE[1])\ *(raw.afe > _ARICHAFERANGE[0])*(raw.afe < _ARICHAFERANGE[1]) raw2= raw[indx] lenraw1= len(raw1) raw1.resize(len(raw1)+len(raw2)) for ii in range(len(raw2)): raw1[lenraw1+ii]= raw2[ii] raw= raw1 indx= numpy.array([True for ii in range(len(raw))],dtype='bool') elif metal == 'all': indx= (raw.feh > -1.5)*(raw.feh < 0.5)\ *(raw.afe > -0.25)*(raw.afe < 0.5) else: indx= numpy.array([True for ii in range(len(raw))],dtype='bool') raw= raw[indx] ndata= len(raw.ra) XYZ= numpy.zeros((ndata,3)) vxvyvz= numpy.zeros((ndata,3)) cov_vxvyvz= numpy.zeros((ndata,3,3)) XYZ[:,0]= raw.xc XYZ[:,1]= raw.yc XYZ[:,2]= raw.zc vxvyvz[:,0]= raw.vxc vxvyvz[:,1]= raw.vyc vxvyvz[:,2]= raw.vzc cov_vxvyvz[:,0,0]= raw.vxc_err**2. cov_vxvyvz[:,1,1]= raw.vyc_err**2. cov_vxvyvz[:,2,2]= raw.vzc_err**2. cov_vxvyvz[:,0,1]= raw.vxvyc_rho*raw.vxc_err*raw.vyc_err cov_vxvyvz[:,0,2]= raw.vxvzc_rho*raw.vxc_err*raw.vzc_err cov_vxvyvz[:,1,2]= raw.vyvzc_rho*raw.vyc_err*raw.vzc_err #Load for output return (XYZ,vxvyvz,cov_vxvyvz,raw)
def pixelFitVel(options,args): if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=options.snmin, distfac=options.distfac) else: raw= read_gdwarfs(logg=True,ebv=True,sn=options.snmin, distfac=options.distfac) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=options.snmin, distfac=options.distfac) else: raw= read_kdwarfs(logg=True,ebv=True,sn=options.snmin, distfac=options.distfac) if not options.bmin is None: #Cut on |b| raw= raw[(numpy.fabs(raw.b) > options.bmin)] #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) #Savefile if os.path.exists(args[0]):#Load savefile savefile= open(args[0],'rb') fits= pickle.load(savefile) ii= pickle.load(savefile) jj= pickle.load(savefile) savefile.close() else: fits= [] ii, jj= 0, 0 #Sample? if options.mcsample: if ii < len(binned.fehedges)-1 and jj < len(binned.afeedges)-1: print "First do all of the fits ..." print "Returning ..." return None if os.path.exists(args[1]): #Load savefile savefile= open(args[1],'rb') samples= pickle.load(savefile) ii= pickle.load(savefile) jj= pickle.load(savefile) savefile.close() else: samples= [] ii, jj= 0, 0 #Model if options.model.lower() == 'hwr': like_func= _HWRLikeMinus pdf_func= _HWRLike step= [0.01,0.3,0.3,0.3,0.3] create_method=['full','step_out','step_out', 'step_out','step_out'] isDomainFinite=[[True,True],[True,True], [True,True],[True,True], [False,True]] domain=[[0.,1.],[-10.,10.],[-100.,100.],[-100.,100.], [0.,4.6051701859880918]] elif options.model.lower() == 'hwrrz': like_func= _HWRRZLikeMinus pdf_func= _HWRRZLike step= [0.01,0.3,0.3,0.3,0.3, 0.3,0.3,0.3,0.3, 0.3,0.3,0.3] create_method=['full', 'step_out','step_out', 'step_out','step_out', 'step_out','step_out', 'step_out','step_out', 'step_out','step_out'] # 'step_out'] isDomainFinite=[[True,True], [True,True],[True,True],[True,True],[False,True], [True,True],[True,True],[True,True],[False,True], [True,True],[True,True]]#,[True,True]] domain=[[0.,1.], [-10.,10.],[-100.,100.],[-100.,100.],[0.,4.6051701859880918], [-10.,10.],[-100.,100.],[-100.,100.],[0.,4.6051701859880918], [-2.,2.],[-10.,10.]]#,[-100.,100.]] elif options.model.lower() == 'isotherm': like_func= _IsothermLikeMinus pdf_func= _IsothermLike step= [0.01,0.05,0.3] create_method=['full','step_out','step_out'] isDomainFinite=[[True,True],[False,False], [False,True]] domain=[[0.,1.],[0.,0.],[0.,4.6051701859880918]] #Run through the bins while ii < len(binned.fehedges)-1: while jj < len(binned.afeedges)-1: data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: if options.mcsample: samples.append(None) else: fits.append(None) jj+= 1 if jj == len(binned.afeedges)-1: jj= 0 ii+= 1 break continue print binned.feh(ii), binned.afe(jj), len(data) #Create XYZ and R, vxvyvz, cov_vxvyvz R= ((8.-data.xc)**2.+data.yc**2.)**0.5 #Confine to R-range? if not options.rmin is None and not options.rmax is None: dataindx= (R >= options.rmin)*\ (R < options.rmax) data= data[dataindx] R= R[dataindx] XYZ= numpy.zeros((len(data),3)) XYZ[:,0]= data.xc XYZ[:,1]= data.yc XYZ[:,2]= data.zc+_ZSUN if options.pivotmean: d= numpy.fabs((XYZ[:,2]-numpy.mean(numpy.fabs(XYZ[:,2])))) else: d= numpy.fabs((XYZ[:,2]-numpy.median(numpy.fabs(XYZ[:,2])))) vxvyvz= numpy.zeros((len(data),3)) vxvyvz[:,0]= data.vxc vxvyvz[:,1]= data.vyc vxvyvz[:,2]= data.vzc cov_vxvyvz= numpy.zeros((len(data),3,3)) cov_vxvyvz[:,0,0]= data.vxc_err**2. cov_vxvyvz[:,1,1]= data.vyc_err**2. cov_vxvyvz[:,2,2]= data.vzc_err**2. cov_vxvyvz[:,0,1]= data.vxvyc_rho*data.vxc_err*data.vyc_err cov_vxvyvz[:,0,2]= data.vxvzc_rho*data.vxc_err*data.vzc_err cov_vxvyvz[:,1,2]= data.vyvzc_rho*data.vyc_err*data.vzc_err if options.vr or options.vrz: #Rotate vxvyvz to vRvTvz cosphi= (8.-XYZ[:,0])/R sinphi= XYZ[:,1]/R vR= -vxvyvz[:,0]*cosphi+vxvyvz[:,1]*sinphi vT= vxvyvz[:,0]*sinphi+vxvyvz[:,1]*cosphi #Subtract mean vR vR-= numpy.mean(vR) vxvyvz[:,0]= vR vxvyvz[:,1]= vT for rr in range(len(XYZ[:,0])): rot= numpy.array([[cosphi[rr],sinphi[rr]], [-sinphi[rr],cosphi[rr]]]) sxy= cov_vxvyvz[rr,0:2,0:2] sRT= numpy.dot(rot,numpy.dot(sxy,rot.T)) cov_vxvyvz[rr,0:2,0:2]= sRT #Fit this data #Initial condition if options.model.lower() == 'hwr': params= numpy.array([0.02,numpy.log(30.),0.,0.,numpy.log(6.)]) elif options.model.lower() == 'hwrrz': params= numpy.array([0.02,numpy.log(30.),0.,0.,numpy.log(6.), numpy.log(30.),0.,0.,numpy.log(6.), 0.2,0.])#,0.]) elif options.model.lower() == 'isotherm': params= numpy.array([0.02,numpy.log(30.),numpy.log(6.)]) if not options.mcsample: #Optimize likelihood params= optimize.fmin_powell(like_func,params, args=(XYZ,vxvyvz,cov_vxvyvz,R,d, options.vr,options.vrz)) if options.chi2: #Calculate chi2 and chi2/dof chi2, dof= like_func(params,XYZ,vxvyvz,cov_vxvyvz,R,d,options.vr,options.vrz, chi2=True) dof-= len(params) params.resize(len(params)+2) params[-2]= chi2 params[-1]= chi2/dof print numpy.exp(params) fits.append(params) else: #Load best-fit params params= fits[jj+ii*binned.npixafe()] print numpy.exp(params) thesesamples= bovy_mcmc.markovpy(params, #thesesamples= bovy_mcmc.slice(params, #step, 0.01, pdf_func, (XYZ,vxvyvz,cov_vxvyvz,R,d, options.vr),#options.vrz), #create_method=create_method, isDomainFinite=isDomainFinite, domain=domain, nsamples=options.nsamples) #Print some helpful stuff printthis= [] for kk in range(len(params)): xs= numpy.array([s[kk] for s in thesesamples]) printthis.append(0.5*(numpy.exp(numpy.mean(xs))-numpy.exp(numpy.mean(xs)-numpy.std(xs))-numpy.exp(numpy.mean(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) print printthis samples.append(thesesamples) jj+= 1 if jj == len(binned.afeedges)-1: jj= 0 ii+= 1 if options.mcsample: save_pickles(args[1],samples,ii,jj) else: save_pickles(args[0],fits,ii,jj) if jj == 0: #this means we've reset the counter break if options.mcsample: save_pickles(args[1],samples,ii,jj) else: save_pickles(args[0],fits,ii,jj) return None
def plotVelPDFs(options,args): if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=True) else: raw= read_gdwarfs(logg=True,ebv=True,sn=True) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=True) else: raw= read_kdwarfs(logg=True,ebv=True,sn=True) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) if options.tighten: tightbinned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe, fehmin=-1.6,fehmax=0.5,afemin=-0.05, afemax=0.55) else: tightbinned= binned #Savefile1 if os.path.exists(args[0]):#Load savefile savefile= open(args[0],'rb') velfits= pickle.load(savefile) savefile.close() if os.path.exists(args[1]):#Load savefile savefile= open(args[1],'rb') densfits= pickle.load(savefile) savefile.close() #Uncertainties are in savefile3 and 4 if len(args) > 3 and os.path.exists(args[3]): savefile= open(args[3],'rb') denssamples= pickle.load(savefile) savefile.close() denserrors= True else: denssamples= None denserrors= False if len(args) > 2 and os.path.exists(args[2]): savefile= open(args[2],'rb') velsamples= pickle.load(savefile) savefile.close() velerrors= True else: velsamples= None velerrors= False #Now plot #Run through the pixels and gather if options.type.lower() == 'afe' or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'zfunc' \ or options.type.lower() == 'afefeh': plotthis= [] errors= [] else: plotthis= numpy.zeros((tightbinned.npixfeh(),tightbinned.npixafe())) if options.kde: allsamples= [] sausageFehAfe= [options.feh,options.afe]#-0.15,0.075]#[[-0.85,0.425],[-0.45,0.275],[-0.15,0.075]] if options.subtype.lower() == 'sausage': sausageSamples= [] for ii in range(tightbinned.npixfeh()): for jj in range(tightbinned.npixafe()): data= binned(tightbinned.feh(ii),tightbinned.afe(jj)) fehindx= binned.fehindx(tightbinned.feh(ii))#Map onto regular binning afeindx= binned.afeindx(tightbinned.afe(jj)) if not (numpy.fabs(tightbinned.feh(ii)-sausageFehAfe[0])< 0.01 and numpy.fabs(tightbinned.afe(jj) - sausageFehAfe[1]) < 0.01): continue thisdensfit= densfits[afeindx+fehindx*binned.npixafe()] thisvelfit= velfits[afeindx+fehindx*binned.npixafe()] if options.velmodel.lower() == 'hwr': thisplot=[tightbinned.feh(ii), tightbinned.afe(jj), numpy.exp(thisvelfit[1]), numpy.exp(thisvelfit[4]), len(data), thisvelfit[2], thisvelfit[3]] #Als find min and max z for this data bin, and median zsorted= sorted(numpy.fabs(data.zc+_ZSUN)) zmin= zsorted[int(numpy.ceil(0.16*len(zsorted)))] zmax= zsorted[int(numpy.floor(0.84*len(zsorted)))] thisplot.extend([zmin,zmax,numpy.mean(numpy.fabs(data.zc+_ZSUN))]) #Errors if velerrors: thesesamples= velsamples[afeindx+fehindx*binned.npixafe()] break #Now plot if options.type.lower() == 'slopequad': plotx= numpy.array([thesesamples[ii][3] for ii in range(len(thesesamples))]) ploty= numpy.array([thesesamples[ii][2] for ii in range(len(thesesamples))]) xrange= [-10.,10.] yrange= [-20.,20.] xlabel=r'$\frac{\mathrm{d}^2 \sigma_z}{\mathrm{d} z^2}(z_{1/2})\ [\mathrm{km}\ \mathrm{s}^{-1}\ \mathrm{kpc}^{-2}]$' ylabel=r'$\frac{\mathrm{d} \sigma_z}{\mathrm{d} z}(z_{1/2})\ [\mathrm{km\ s}^{-1}\ \mathrm{kpc}^{-1}]$' elif options.type.lower() == 'slopehsm': ploty= numpy.array([thesesamples[ii][2] for ii in range(len(thesesamples))]) plotx= numpy.exp(-numpy.array([thesesamples[ii][4] for ii in range(len(thesesamples))])) xrange= [0.,0.3] yrange= [-20.,20.] xlabel=r'$h^{-1}_\sigma\ [\mathrm{kpc}^{-1}]$' ylabel=r'$\frac{\mathrm{d} \sigma_z}{\mathrm{d} z}(z_{1/2})\ [\mathrm{km\ s}^{-1}\ \mathrm{kpc}^{-1}]$' elif options.type.lower() == 'slopesz': ploty= numpy.array([thesesamples[ii][2] for ii in range(len(thesesamples))]) plotx= numpy.exp(numpy.array([thesesamples[ii][1] for ii in range(len(thesesamples))])) xrange= [0.,60.] yrange= [-20.,20.] xlabel=r'$\sigma_z(z_{1/2}) [\mathrm{km\ s}^{-1}$' ylabel=r'$\frac{\mathrm{d} \sigma_z}{\mathrm{d} z}(z_{1/2})\ [\mathrm{km\ s}^{-1}\ \mathrm{kpc}^{-1}]$' elif options.type.lower() == 'szhsm': plotx= numpy.exp(-numpy.array([thesesamples[ii][4] for ii in range(len(thesesamples))])) ploty= numpy.exp(numpy.array([thesesamples[ii][1] for ii in range(len(thesesamples))])) yrange= [0.,60.] xrange= [0.,0.3] xlabel=r'$h^{-1}_\sigma\ [\mathrm{kpc}^{-1}]$' ylabel=r'$\sigma_z(z_{1/2}) [\mathrm{km\ s}^{-1}$' bovy_plot.bovy_print() axScatter, axHistx, axHisty= bovy_plot.scatterplot(plotx,ploty,'k,', onedhists=True, bins=31, xlabel=xlabel,ylabel=ylabel, xrange=xrange, onedhistynormed=True, yrange=yrange, retAxes=True) if options.type.lower() == 'slopequad': #Also add `quadratic term = 0' to vertical histogram ploty= ploty[(numpy.fabs(plotx) < 0.5)] histy, edges, patches= axHisty.hist(ploty, bins=51, orientation='horizontal', weights=numpy.ones(len(ploty))/float(len(ploty))/2., histtype='step', range=sorted(yrange), color='0.6', lw=2.) #Label bovy_plot.bovy_text(r'$[\mathrm{Fe/H}]\ =\ %.2f$' % options.feh +'\n' +r'$[\alpha/\mathrm{Fe}]\ =\ %.3f$' % options.afe, top_right=True, size=18) bovy_plot.bovy_end_print(options.plotfile)
def testDFNorm(options,args): #Read the data print "Reading the data ..." if options.sample.lower() == 'g': if not options.fakedata is None: raw= read_gdwarfs(options.fakedata,logg=True,ebv=True,sn=options.snmin,nosolar=True) elif options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=options.snmin,nosolar=True) else: raw= read_gdwarfs(logg=True,ebv=True,sn=options.snmin,nosolar=True) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=options.snmin,nosolar=True) else: raw= read_kdwarfs(logg=True,ebv=True,sn=options.snmin,nosolar=True) if not options.bmin is None: #Cut on |b| raw= raw[(numpy.fabs(raw.b) > options.bmin)] if not options.fehmin is None: raw= raw[(raw.feh >= options.fehmin)] if not options.fehmax is None: raw= raw[(raw.feh < options.fehmax)] if not options.afemin is None: raw= raw[(raw.afe >= options.afemin)] if not options.afemax is None: raw= raw[(raw.afe < options.afemax)] if not options.plate is None and not options.loo: raw= raw[(raw.plate == options.plate)] elif not options.plate is None: raw= raw[(raw.plate != options.plate)] #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) #Map the bins with ndata > minndata in 1D fehs, afes= [], [] for ii in range(len(binned.fehedges)-1): for jj in range(len(binned.afeedges)-1): data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: continue fehs.append(binned.feh(ii)) afes.append(binned.afe(jj)) nabundancebins= len(fehs) fehs= numpy.array(fehs) afes= numpy.array(afes) if not options.singlefeh is None: if options.loo: pass else: #Set up single feh indx= binned.callIndx(options.singlefeh,options.singleafe) if numpy.sum(indx) == 0: raise IOError("Bin corresponding to singlefeh and singleafe is empty ...") data= copy.copy(binned.data[indx]) print "Using %i data points ..." % (len(data)) #Bin again binned= pixelAfeFeh(data,dfeh=options.dfeh,dafe=options.dafe) fehs, afes= [], [] for ii in range(len(binned.fehedges)-1): for jj in range(len(binned.afeedges)-1): data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: continue fehs.append(binned.feh(ii)) afes.append(binned.afe(jj)) nabundancebins= len(fehs) fehs= numpy.array(fehs) afes= numpy.array(afes) #Setup everything for the selection function print "Setting up stuff for the normalization integral ..." normintstuff= setup_normintstuff(options,raw,binned,fehs,afes) if not options.init is None: #Load initial parameters from file savefile= open(options.init,'rb') params= pickle.load(savefile) savefile.close() else: #First initialization params= initialize(options,fehs,afes) #Now perform tests if options.type.lower() == 'hr': testDFNormhr(params,fehs,afes,binned,options,normintstuff) elif options.type.lower() == 'sr': testDFNormsr(params,fehs,afes,binned,options,normintstuff) elif options.type.lower() == 'vo': testDFNormvo(params,fehs,afes,binned,options,normintstuff)
def generate_fakeDFData(options,args): #Check whether the savefile already exists if os.path.exists(args[0]): savefile= open(args[0],'rb') print "Savefile already exists, not re-sampling and overwriting ..." return None #Read the data print "Reading the data ..." if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=options.snmin,nosolar=True,nocoords=True) else: raw= read_gdwarfs(logg=True,ebv=True,sn=options.snmin,nosolar=True,nocoords=True) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=options.snmin,nosolar=True,nocoords=True) else: raw= read_kdwarfs(logg=True,ebv=True,sn=options.snmin,nosolar=True, nocoords=True) if not options.bmin is None: #Cut on |b| raw= raw[(numpy.fabs(raw.b) > options.bmin)] if not options.fehmin is None: raw= raw[(raw.feh >= options.fehmin)] if not options.fehmax is None: raw= raw[(raw.feh < options.fehmax)] if not options.afemin is None: raw= raw[(raw.afe >= options.afemin)] if not options.afemax is None: raw= raw[(raw.afe < options.afemax)] if not options.plate is None and not options.loo: raw= raw[(raw.plate == options.plate)] elif not options.plate is None: raw= raw[(raw.plate != options.plate)] #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) #Map the bins with ndata > minndata in 1D fehs, afes= [], [] for ii in range(len(binned.fehedges)-1): for jj in range(len(binned.afeedges)-1): data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: continue fehs.append(binned.feh(ii)) afes.append(binned.afe(jj)) nabundancebins= len(fehs) fehs= numpy.array(fehs) afes= numpy.array(afes) if not options.singlefeh is None: if options.loo: pass else: #Set up single feh indx= binned.callIndx(options.singlefeh,options.singleafe) if numpy.sum(indx) == 0: raise IOError("Bin corresponding to singlefeh and singleafe is empty ...") data= copy.copy(binned.data[indx]) print "Using %i data points ..." % (len(data)) #Bin again binned= pixelAfeFeh(data,dfeh=options.dfeh,dafe=options.dafe) fehs, afes= [], [] for ii in range(len(binned.fehedges)-1): for jj in range(len(binned.afeedges)-1): data= binned(binned.feh(ii),binned.afe(jj)) if len(data) < options.minndata: continue fehs.append(binned.feh(ii)) afes.append(binned.afe(jj)) nabundancebins= len(fehs) fehs= numpy.array(fehs) afes= numpy.array(afes) #Setup the selection function #Load selection function plates= numpy.array(list(set(list(raw.plate))),dtype='int') #Only load plates that we use print "Using %i plates, %i stars ..." %(len(plates),len(raw)) sf= segueSelect(plates=plates,type_faint='tanhrcut', sample=options.sample,type_bright='tanhrcut', sn=options.snmin,select=options.select, indiv_brightlims=options.indiv_brightlims) platelb= bovy_coords.radec_to_lb(sf.platestr.ra,sf.platestr.dec, degree=True) if options.sample.lower() == 'g': grmin, grmax= 0.48, 0.55 rmin,rmax= 14.50001, 20.199999 #so we don't go out of the range if options.sample.lower() == 'k': grmin, grmax= 0.55, 0.75 rmin,rmax= 14.50001, 18.999999 colorrange=[grmin,grmax] mapfehs= monoAbundanceMW.fehs() mapafes= monoAbundanceMW.afes() #Setup params if not options.init is None: #Load initial parameters from file savefile= open(options.init,'rb') tparams= pickle.load(savefile) savefile.close() #Setup the correct form params= initialize(options,fehs,afes) params[0:6]= get_dfparams(tparams,options.index,options,log=True) params[6:11]= tparams[-5:len(tparams)] else: params= initialize(options,fehs,afes) #Setup potential if (options.potential.lower() == 'flatlog' or options.potential.lower() == 'flatlogdisk') \ and not options.flatten is None: #Set flattening potparams= list(get_potparams(params,options,len(fehs))) potparams[0]= options.flatten params= set_potparams(potparams,params,options,len(fehs)) pot= setup_potential(params,options,len(fehs)) aA= setup_aA(pot,options) if not options.multi is None: binned= fakeDFData_abundance_singles(binned,options,args,fehs,afes) else: for ii in range(len(fehs)): print "Working on population %i / %i ..." % (ii+1,len(fehs)) #Setup qdf dfparams= get_dfparams(params,ii,options,log=False) vo= get_vo(params,options,len(fehs)) ro= get_ro(params,options) if options.dfmodel.lower() == 'qdf': #Normalize hr= dfparams[0]/ro sr= dfparams[1]/vo sz= dfparams[2]/vo hsr= dfparams[3]/ro hsz= dfparams[4]/ro print hr, sr, sz, hsr, hsz qdf= quasiisothermaldf(hr,sr,sz,hsr,hsz,pot=pot,aA=aA,cutcounter=True) #Some more selection stuff data= binned(fehs[ii],afes[ii]) #feh and color feh= fehs[ii] fehrange= [feh-options.dfeh/2.,feh+options.dfeh/2.] #FeH fehdist= DistSpline(*numpy.histogram(data.feh,bins=5, range=fehrange), xrange=fehrange,dontcuttorange=False) #Color colordist= DistSpline(*numpy.histogram(data.dered_g\ -data.dered_r, bins=9,range=colorrange), xrange=colorrange) #Re-sample binned= fakeDFData(binned,qdf,ii,params,fehs,afes,options, rmin,rmax, platelb, grmin,grmax, fehrange, colordist, fehdist,feh,sf, mapfehs,mapafes, ro=None,vo=None) #Save to new file fitsio.write(args[0],binned.data) return None
def plotOneDiskVsTwoDisks(options,args): if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=options.sn) else: raw= read_gdwarfs(logg=True,ebv=True,sn=options.sn) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=options.sn) else: raw= read_kdwarfs(logg=True,ebv=True,sn=options.sn) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) if options.tighten: tightbinned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe, fehmin=-2.,fehmax=0.3,afemin=0.,afemax=0.45) else: tightbinned= binned #Savefile1 if os.path.exists(args[0]):#Load savefile savefile= open(args[0],'rb') onefits= pickle.load(savefile) savefile.close() if os.path.exists(args[1]):#Load savefile savefile= open(args[1],'rb') twofits= pickle.load(savefile) savefile.close() #Uncertainties are in savefile3 and 4 if len(args) > 3 and os.path.exists(args[3]): savefile= open(args[3],'rb') twosamples= pickle.load(savefile) savefile.close() twoerrors= True else: twosamples= None twoerrors= False if len(args) > 2 and os.path.exists(args[2]): savefile= open(args[2],'rb') onesamples= pickle.load(savefile) savefile.close() oneerrors= True else: onesamples= None oneerrors= False #If --mass is set to a filename, load the masses from that file #and use those for the symbol size if not options.mass is None and os.path.exists(options.mass): savefile= open(options.mass,'rb') mass= pickle.load(savefile) savefile.close() ndata= mass masses= True else: masses= False #Run through the pixels and gather plotthis= [] errors= [] for ii in range(tightbinned.npixfeh()): for jj in range(tightbinned.npixafe()): data= binned(tightbinned.feh(ii),tightbinned.afe(jj)) fehindx= binned.fehindx(tightbinned.feh(ii))#Map onto regular binning afeindx= binned.afeindx(tightbinned.afe(jj)) if afeindx+fehindx*binned.npixafe() >= len(onefits): continue thisonefit= onefits[afeindx+fehindx*binned.npixafe()] thistwofit= twofits[afeindx+fehindx*binned.npixafe()] if thisonefit is None: continue if len(data) < options.minndata: continue #print tightbinned.feh(ii), tightbinned.afe(jj), numpy.exp(thisonefit), numpy.exp(thistwofit) #Which is the dominant two-exp component? if thistwofit[4] > 0.5: twoIndx= 1 else: twoIndx= 0 if options.type == 'hz': if masses: plotthis.append([numpy.exp(thisonefit[0])*1000., numpy.exp(thistwofit[twoIndx])*1000., mass[afeindx+fehindx*binned.npixafe()]]) else: plotthis.append([numpy.exp(thisonefit[0])*1000., numpy.exp(thistwofit[twoIndx])*1000., len(data)]) #Discrepant point if plotthis[-1][1] < 250. and plotthis[-1][0] > 500.: print "strange point: ", tightbinned.feh(ii),tightbinned.afe(jj) elif options.type == 'hr': plotthis.append([numpy.exp(thisonefit[1]),numpy.exp(thistwofit[twoIndx+2]),len(data)]) theseerrors= [] if oneerrors: theseonesamples= onesamples[afeindx+fehindx*binned.npixafe()] if options.type == 'hz': xs= numpy.array([s[0] for s in theseonesamples]) theseerrors.append(500.*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) elif options.type == 'hr': xs= numpy.array([s[1] for s in theseonesamples]) theseerrors.append(0.5*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) if twoerrors: thesetwosamples= twosamples[afeindx+fehindx*binned.npixafe()] if options.type == 'hz': xs= numpy.array([s[twoIndx] for s in thesetwosamples]) theseerrors.append(500.*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) elif options.type == 'hr': xs= numpy.array([s[2+twoIndx] for s in thesetwosamples]) theseerrors.append(0.5*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) errors.append(theseerrors) x, y, ndata= [], [], [] if oneerrors: x_err= [] if twoerrors: y_err= [] for ii in range(len(plotthis)): x.append(plotthis[ii][0]) y.append(plotthis[ii][1]) ndata.append(plotthis[ii][2]) if oneerrors: x_err.append(errors[ii][0]) if twoerrors: y_err.append(errors[ii][1]) x= numpy.array(x) y= numpy.array(y) if oneerrors: x_err= numpy.array(x_err) if twoerrors: y_err= numpy.array(y_err) ndata= numpy.array(ndata) #Process ndata if not masses: ndata= ndata**.5 ndata= ndata/numpy.median(ndata)*35. ndata= 20 else: ndata= _squeeze(ndata,numpy.amin(ndata),numpy.amax(ndata)) ndata= ndata*200.+10. #Now plot if options.type == 'hz': xrange= [150,1200] xlabel=r'$\mathrm{single-exponential\ scale\ height}$' ylabel=r'$\mathrm{two-exponentials\ scale\ height}$' elif options.type == 'hr': xrange= [1.2,5.] xlabel=r'$\mathrm{single-exponential\ scale\ length}$' ylabel=r'$\mathrm{two-exponentials\ scale\ length}$' yrange=xrange bovy_plot.bovy_print() bovy_plot.bovy_plot(x,y,color='k', s=ndata, ylabel=ylabel, xlabel=xlabel, xrange=xrange,yrange=yrange, scatter=True,edgecolors='none', colorbar=False,zorder=2) bovy_plot.bovy_plot([xrange[0],xrange[1]],[xrange[0],xrange[1]],color='0.5',ls='--',overplot=True) if oneerrors: #Overplot errors for ii in range(len(x)): # if (options.type == 'hr' and x[ii] < 5.) or options.type == 'hz': pyplot.errorbar(x[ii],y[ii],xerr=x_err[ii],color='k', elinewidth=1.,capsize=3,zorder=0) if twoerrors: #Overplot errors for ii in range(len(x)): # if (options.type == 'hr' and x[ii] < 5.) or options.type == 'hz': pyplot.errorbar(x[ii],y[ii],yerr=y_err[ii],color='k', elinewidth=1.,capsize=3,zorder=0) bovy_plot.bovy_end_print(options.plotfile) return None
def plotTilt(options,args): if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=True) else: raw= read_gdwarfs(logg=True,ebv=True,sn=True) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=True) else: raw= read_kdwarfs(logg=True,ebv=True,sn=True) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) if options.tighten: tightbinned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe, fehmin=-1.6,fehmax=0.5,afemin=-0.05, afemax=0.55) else: tightbinned= binned #Savefile1 if os.path.exists(args[0]):#Load savefile savefile= open(args[0],'rb') velfits= pickle.load(savefile) savefile.close() #Uncertainties are in savefile2 if len(args) > 2 and os.path.exists(args[2]): savefile= open(args[2],'rb') velsamples= pickle.load(savefile) savefile.close() velerrors= True else: velsamples= None velerrors= False #Now plot #Run through the pixels and gather if options.type.lower() == 'afe' or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'zfunc' \ or options.type.lower() == 'afefeh': plotthis= [] errors= [] else: plotthis= numpy.zeros((tightbinned.npixfeh(),tightbinned.npixafe())) for ii in range(tightbinned.npixfeh()): for jj in range(tightbinned.npixafe()): data= binned(tightbinned.feh(ii),tightbinned.afe(jj)) fehindx= binned.fehindx(tightbinned.feh(ii))#Map onto regular binning afeindx= binned.afeindx(tightbinned.afe(jj)) if afeindx+fehindx*binned.npixafe() >= len(velfits) \ or afeindx+fehindx*binned.npixafe() >= len(velfits): if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'zfunc' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue thisvelfit= velfits[afeindx+fehindx*binned.npixafe()] if thisvelfit is None: if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'zfunc' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue if len(data) < options.minndata: if options.type.lower() == 'afe' or options.type.lower() == 'feh' or options.type.lower() == 'fehafe' \ or options.type.lower() == 'zfunc' \ or options.type.lower() == 'afefeh': continue else: plotthis[ii,jj]= numpy.nan continue if options.type == 'tilt': plotthis[ii,jj]= numpy.arctan(thisvelfit[9])/_DEGTORAD elif options.type == 'tiltslope': plotthis[ii,jj]= thisvelfit[10] elif options.type == 'srz': plotthis[ii,jj]= (numpy.exp(2.*thisvelfit[5])-numpy.exp(2.*thisvelfit[1]))*thisvelfit[9]/(1.-thisvelfit[9]**2.) elif options.type.lower() == 'afe' \ or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'zfunc' \ or options.type.lower() == 'afefeh': thisplot=[tightbinned.feh(ii), tightbinned.afe(jj), len(data)] thisplot.extend(thisvelfit) #Als find min and max z for this data bin, and median if options.subtype.lower() == 'rfunc': zsorted= sorted(numpy.sqrt((8.-data.xc)**2.+data.yc**2.)) else: zsorted= sorted(numpy.fabs(data.zc+_ZSUN)) zmin= zsorted[int(numpy.ceil(0.16*len(zsorted)))] zmax= zsorted[int(numpy.floor(0.84*len(zsorted)))] zmin= zsorted[int(numpy.ceil(0.025*len(zsorted)))] zmax= zsorted[int(numpy.floor(0.975*len(zsorted)))] if options.pivotmean: thisplot.extend([zmin,zmax,numpy.mean(numpy.fabs(data.zc+_ZSUN))]) else: thisplot.extend([zmin,zmax,numpy.median(numpy.fabs(data.zc+_ZSUN))]) plotthis.append(thisplot) #Errors if velerrors: theseerrors= [] thesesamples= velsamples[afeindx+fehindx*binned.npixafe()] for kk in [1,4,5,8]: xs= numpy.array([s[kk] for s in thesesamples]) theseerrors.append(0.5*(numpy.exp(numpy.mean(xs))-numpy.exp(numpy.mean(xs)-numpy.std(xs))-numpy.exp(numpy.mean(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) for kk in [0,2,3,6,7,9,10]: #,11]: xs= numpy.array([s[kk] for s in thesesamples]) theseerrors.append(numpy.std(xs)) errors.append(theseerrors) #Set up plot #print numpy.nanmin(plotthis), numpy.nanmax(plotthis) if options.type == 'tilt': print numpy.nanmin(plotthis), numpy.nanmax(plotthis) vmin, vmax= -20.,20. zlabel= r'$\mathrm{tilt\ at}\ Z = 0\ [\mathrm{degree}]$' elif options.type == 'tiltslope': print numpy.nanmin(plotthis), numpy.nanmax(plotthis) vmin, vmax= -2.,2. zlabel= r'$\frac{\mathrm{d}\tan \mathrm{tilt}}{\mathrm{d} (Z/R)}$' elif options.type == 'srz': vmin, vmax= -100.,100. zlabel= r'$\sigma^2_{RZ}\ [\mathrm{km}^2\, \mathrm{s}^{-2}]$' elif options.type == 'afe': vmin, vmax= 0.0,.5 zlabel=r'$[\alpha/\mathrm{Fe}]$' elif options.type == 'feh': vmin, vmax= -1.6,0.4 zlabel=r'$[\mathrm{Fe/H}]$' if options.tighten: xrange=[-1.6,0.5] yrange=[-0.05,0.55] else: xrange=[-2.,0.6] yrange=[-0.1,0.6] if options.type.lower() == 'afe' or options.type.lower() == 'feh' \ or options.type.lower() == 'fehafe' \ or options.type.lower() == 'afefeh': bovy_plot.bovy_print(fig_height=3.87,fig_width=5.) #Gather everything zmin, zmax, pivot, tilt, tiltp1, tiltp2, afe, feh, ndata= [], [], [], [], [], [], [], [], [] tilt_err, tiltp1_err, tiltp2_err= [], [], [] for ii in range(len(plotthis)): if velerrors: tilt_err.append(errors[ii][9]) tiltp1_err.append(errors[ii][10]) # tiltp2_err.append(errors[ii][11]) tilt.append(plotthis[ii][11]) tiltp1.append(plotthis[ii][12]) # tiltp2.append(plotthis[ii][13]) afe.append(plotthis[ii][1]) feh.append(plotthis[ii][0]) ndata.append(plotthis[ii][4]) zmin.append(plotthis[ii][13]) zmax.append(plotthis[ii][14]) pivot.append(plotthis[ii][15]) indxarray= numpy.array([True for ii in range(len(plotthis))],dtype='bool') tilt= numpy.array(tilt)[indxarray] tiltp1= numpy.array(tiltp1)[indxarray] # tiltp2= numpy.array(tiltp2)[indxarray] pivot= numpy.array(pivot)[indxarray] zmin= numpy.array(zmin)[indxarray] zmax= numpy.array(zmax)[indxarray] if velerrors: tilt_err= numpy.array(tilt_err)[indxarray] tiltp1_err= numpy.array(tiltp1_err)[indxarray] # tiltp2_err= numpy.array(tiltp2_err)[indxarray] afe= numpy.array(afe)[indxarray] feh= numpy.array(feh)[indxarray] ndata= numpy.array(ndata)[indxarray] #Process ndata ndata= ndata**.5 ndata= ndata/numpy.median(ndata)*35. #ndata= numpy.log(ndata)/numpy.log(numpy.median(ndata)) #ndata= (ndata-numpy.amin(ndata))/(numpy.amax(ndata)-numpy.amin(ndata))*25+12. if options.type.lower() == 'afe': plotc= afe elif options.type.lower() == 'feh': plotc= feh if options.subtype.lower() == 'zfunc': from selectFigs import _squeeze colormap = cm.jet #Set up plot yrange= [-30.,30.] ylabel=r'$\mathrm{tilt}(Z|R=8\,\mathrm{kpc})\ [\mathrm{degree}]$' bovy_plot.bovy_plot([-100.,-100.],[100.,100.],'k,', xrange=[0,2700],yrange=yrange, xlabel=r'$|z|\ [\mathrm{pc}]$', ylabel=ylabel) #Calculate and plot all zfuncs for ii in numpy.random.permutation(len(afe)): if velerrors: #Don't plot if errors > 30% if tilt_err[ii]/tilt[ii] > .2: continue ds= numpy.linspace(zmin[ii]*1000.,zmax[ii]*1000.,1001)/8000. thiszfunc= numpy.arctan(tilt[ii]+tiltp1[ii]*ds)/_DEGTORAD #+tiltp2[ii]*ds**2. pyplot.plot(numpy.linspace(zmin[ii]*1000.,1000*zmax[ii],1001), thiszfunc,'-', color=colormap(_squeeze(plotc[ii],vmin,vmax)), lw=ndata[ii]/15.) if not options.nofatdots: #Also plot pivot pyplot.plot(1000.*pivot[ii], numpy.arctan(tilt[ii]+tiltp1[ii]*pivot[ii]/8.\ +tiltp2[ii]*(pivot[ii]/8.)**2.)/_DEGTORAD, 'o',ms=8.,mec='none', color=colormap(_squeeze(plotc[ii],vmin,vmax))) #Add colorbar m = cm.ScalarMappable(cmap=cm.jet) m.set_array(plotc) m.set_clim(vmin=vmin,vmax=vmax) cbar= pyplot.colorbar(m,fraction=0.15) cbar.set_clim((vmin,vmax)) cbar.set_label(zlabel) else: bovy_plot.bovy_print() bovy_plot.bovy_dens2d(plotthis.T,origin='lower',cmap='jet', interpolation='nearest', xlabel=r'$[\mathrm{Fe/H}]$', ylabel=r'$[\alpha/\mathrm{Fe}]$', zlabel=zlabel, xrange=xrange,yrange=yrange, vmin=vmin,vmax=vmax, contours=False, colorbar=True,shrink=0.78) bovy_plot.bovy_text(r'$\mathrm{median} = %.2f \pm %.2f$' % (numpy.median(plotthis[numpy.isfinite(plotthis)]), 1.4826*numpy.median(numpy.fabs(plotthis[numpy.isfinite(plotthis)]-numpy.median(plotthis[numpy.isfinite(plotthis)])))), bottom_left=True,size=14.) bovy_plot.bovy_end_print(options.plotfile) return None
def plot_distsystematic(options,args): if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=options.snmin) else: raw= read_gdwarfs(logg=True,ebv=True,sn=options.snmin) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=options.snmin) else: raw= read_kdwarfs(logg=True,ebv=True,sn=options.snmin) if not options.bmin is None: #Cut on |b| raw= raw[(numpy.fabs(raw.b) > options.bmin)] #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) if options.tighten: tightbinned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe, fehmin=-1.6,fehmax=0.5,afemin=-0.05, afemax=0.55) else: tightbinned= binned plotthis= numpy.zeros((tightbinned.npixfeh(),tightbinned.npixafe()))+numpy.nan #Run through the bins for ii in range(tightbinned.npixfeh()): for jj in range(tightbinned.npixafe()): data= binned(tightbinned.feh(ii),tightbinned.afe(jj)) if len(data) < options.minndata: jj+= 1 if jj == len(binned.afeedges)-1: jj= 0 ii+= 1 break continue #Create XYZ and R, vxvyvz, cov_vxvyvz R= ((8.-data.xc)**2.+data.yc**2.)**0.5 #Confine to R-range? if not options.rmin is None and not options.rmax is None: dataindx= (R >= options.rmin)*\ (R < options.rmax) data= data[dataindx] R= R[dataindx] XYZ= numpy.zeros((len(data),3)) XYZ[:,0]= data.xc XYZ[:,1]= data.yc XYZ[:,2]= data.zc+_ZSUN vxvyvz= numpy.zeros((len(data),3)) vxvyvz[:,0]= data.vxc vxvyvz[:,1]= data.vyc vxvyvz[:,2]= data.vzc """ cov_vxvyvz= numpy.zeros((len(data),3,3)) cov_vxvyvz[:,0,0]= data.vxc_err**2. cov_vxvyvz[:,1,1]= data.vyc_err**2. cov_vxvyvz[:,2,2]= data.vzc_err**2. cov_vxvyvz[:,0,1]= data.vxvyc_rho*data.vxc_err*data.vyc_err cov_vxvyvz[:,0,2]= data.vxvzc_rho*data.vxc_err*data.vzc_err cov_vxvyvz[:,1,2]= data.vyvzc_rho*data.vyc_err*data.vzc_err """ cosphi= (8.-XYZ[:,0])/R sinphi= XYZ[:,1]/R sinbeta= XYZ[:,2]/numpy.sqrt(R*R+XYZ[:,2]*XYZ[:,2]) cosbeta= R/numpy.sqrt(R*R+XYZ[:,2]*XYZ[:,2]) ndata= len(data.ra) cov_pmradec= numpy.zeros((ndata,2,2)) cov_pmradec[:,0,0]= data.pmra_err**2. cov_pmradec[:,1,1]= data.pmdec_err**2. cov_pmllbb= bovy_coords.cov_pmrapmdec_to_pmllpmbb(cov_pmradec,data.ra, data.dec,degree=True) """ vR= -vxvyvz[:,0]*cosphi+vxvyvz[:,1]*sinphi vT= vxvyvz[:,0]*sinphi+vxvyvz[:,1]*cosphi vz= vxvyvz[:,2] vxvyvz[:,0]= vR vxvyvz[:,1]= vT for rr in range(len(XYZ[:,0])): rot= numpy.array([[cosphi[rr],sinphi[rr]], [-sinphi[rr],cosphi[rr]]]) sxy= cov_vxvyvz[rr,0:2,0:2] sRT= numpy.dot(rot,numpy.dot(sxy,rot.T)) cov_vxvyvz[rr,0:2,0:2]= sRT """ #calculate x and y lb= bovy_coords.radec_to_lb(data.ra,data.dec,degree=True) lb*= _DEGTORAD tuu= 1.-numpy.cos(lb[:,1])**2.*numpy.cos(lb[:,0])**2. tuv= -0.5*numpy.cos(lb[:,1])**2.*numpy.sin(2.*lb[:,0]) tuw= -0.5*numpy.cos(lb[:,0])*numpy.sin(2.*lb[:,1]) tvv= 1.-numpy.cos(lb[:,1])**2.*numpy.sin(lb[:,0])**2. tvw= -0.5*numpy.sin(2.*lb[:,1])*numpy.sin(lb[:,0]) tww= numpy.cos(lb[:,1])**2. #x= tuu*_VRSUN+tuv*vxvyvz[:,1]+tuw*vxvyvz[:,2] #y= -tww*_VZSUN+tuw*vxvyvz[:,0]+tvw*vxvyvz[:,1] x= -tuu*numpy.mean(vxvyvz[:,0])+tuv*vxvyvz[:,1]+tuw*vxvyvz[:,2] y= -tww*numpy.mean(vxvyvz[:,2])+tuw*vxvyvz[:,0]+tvw*vxvyvz[:,1] if options.type.lower() == 'u': corcorr=0. plotthis[ii,jj]= (numpy.mean(vxvyvz[:,0]*x)-numpy.mean(vxvyvz[:,0])*numpy.mean(x))/(numpy.var(x)+numpy.mean(tuv**2.+tuw**2.)*numpy.var(vxvyvz[:,0])) elif options.type.lower() == 'meanu': plotthis[ii,jj]= numpy.mean(vxvyvz[:,0]) elif options.type.lower() == 'meanw': plotthis[ii,jj]= numpy.mean(vxvyvz[:,2]) else: corcorr= 0.25*numpy.mean(2.*sinbeta*cosbeta*numpy.sin(2.*lb[:,1])*numpy.cos(lb[:,0])*cosphi)*(numpy.var(vxvyvz[:,0])-numpy.var(vxvyvz[:,2]))\ -0.25*numpy.mean(2.*sinbeta*cosbeta*numpy.sin(2.*lb[:,1])*numpy.sin(lb[:,0])*sinphi)*(numpy.var(vxvyvz[:,0])-numpy.var(vxvyvz[:,2]))\ +0.25*numpy.mean(numpy.sin(lb[:,1])**2.*(cov_pmllbb[:,1,1]*data.dist**2.*4.74**2.-data.vr_err**2.)) plotthis[ii,jj]= (numpy.mean(vxvyvz[:,2]*y)-numpy.mean(vxvyvz[:,2])*numpy.mean(y)-corcorr)/(numpy.var(y)+numpy.mean(tvw**2.+tuw**2.)*numpy.var(vxvyvz[:,2])) #print ii, jj, plotthis[ii,jj], corcorr, numpy.mean(vxvyvz[:,2]*y)-numpy.mean(vxvyvz[:,2])*numpy.mean(y)-corcorr jj+= 1 if jj == len(binned.afeedges)-1: jj= 0 ii+= 1 if jj == 0: #this means we've reset the counter break #print plotthis #Set up plot if options.type.lower() == 'meanu': vmin, vmax= -20.,20. zlabel=r'$\mathrm{mean}\ U$' elif options.type.lower() == 'meanw': vmin, vmax= -20.,20. zlabel=r'$\mathrm{mean}\ W$' else: vmin, vmax= -0.2,0.2 zlabel=r'$\mathrm{fractional\ distance\ overestimate}$' if options.tighten: xrange=[-1.6,0.5] yrange=[-0.05,0.55] else: xrange=[-2.,0.5] yrange=[-0.2,0.6] bovy_plot.bovy_print() bovy_plot.bovy_dens2d(plotthis.T,origin='lower',cmap='jet', interpolation='nearest', xlabel=r'$[\mathrm{Fe/H}]$', ylabel=r'$[\alpha/\mathrm{Fe}]$', zlabel=zlabel, xrange=xrange,yrange=yrange, vmin=vmin,vmax=vmax, contours=False, colorbar=True,shrink=0.78) bovy_plot.bovy_text(r'$\mathrm{median} = %.2f$' % (numpy.median(plotthis[numpy.isfinite(plotthis)])), bottom_left=True,size=14.) bovy_plot.bovy_end_print(options.outfilename) return None
def collateFits(options,args): if options.sample.lower() == 'g': if options.select.lower() == 'program': raw= read_gdwarfs(_GDWARFFILE,logg=True,ebv=True,sn=True) else: raw= read_gdwarfs(logg=True,ebv=True,sn=True) elif options.sample.lower() == 'k': if options.select.lower() == 'program': raw= read_kdwarfs(_KDWARFFILE,logg=True,ebv=True,sn=True) else: raw= read_kdwarfs(logg=True,ebv=True,sn=True) #Bin the data binned= pixelAfeFeh(raw,dfeh=options.dfeh,dafe=options.dafe) #Savefiles if os.path.exists(args[0]):#Load density fits savefile= open(args[0],'rb') densfits= pickle.load(savefile) savefile.close() else: raise IOError("density fits file not included") if os.path.exists(args[1]):#Load density fits savefile= open(args[1],'rb') denssamples= pickle.load(savefile) savefile.close() else: raise IOError("density samples file not included") if os.path.exists(args[2]):#Load density fits savefile= open(args[2],'rb') mass= pickle.load(savefile) savefile.close() else: raise IOError("masses file not included") #if os.path.exists(args[3]):#Load density fits # savefile= open(args[3],'rb') # masssamples= pickle.load(savefile) # savefile.close() #else: # raise IOError("mass samples file not included") if os.path.exists(args[4]):#Load density fits savefile= open(args[4],'rb') velfits= pickle.load(savefile) savefile.close() else: raise IOError("vertical velocity file not included") if os.path.exists(args[5]):#Load density fits savefile= open(args[5],'rb') velsamples= pickle.load(savefile) savefile.close() else: raise IOError("vertical velocity samples file not included") if os.path.exists(args[6]):#Load density fits savefile= open(args[6],'rb') velrfits= pickle.load(savefile) savefile.close() else: raise IOError("radial velocity file not included") if os.path.exists(args[7]):#Load density fits savefile= open(args[7],'rb') velrsamples= pickle.load(savefile) savefile.close() else: raise IOError("radial velocity samples file not included") nrecs= len([r for r in densfits if not r is None]) out= numpy.recarray(nrecs,dtype=[('feh',float), ('afe',float), ('hz',float), ('hr',float), ('bc',float), ('mass',float), ('sz',float), ('hsz',float), ('p1',float), ('p2',float), ('sr',float), ('hsr',float), ('zmin',float), ('zmax',float), ('zmedian',float), ('hz_err',float), ('hr_err',float), ('mass_err',float), ('sz_err',float), ('hsz_err',float), ('p1_err',float), ('p2_err',float), ('szp1_corr',float), ('szp2_corr',float), ('szhsz_corr',float), ('p1hsz_corr',float), ('p2hsz_corr',float), ('p1p2_corr',float), ('sr_err',float)]) nout= 0 #Start filling it up for ii in range(binned.npixfeh()): for jj in range(binned.npixafe()): data= binned(binned.feh(ii),binned.afe(jj)) fehindx= binned.fehindx(binned.feh(ii))#Map onto regular binning afeindx= binned.afeindx(binned.afe(jj))#Unnecessary here if afeindx+fehindx*binned.npixafe() >= len(densfits): continue thisdensfit= densfits[afeindx+fehindx*binned.npixafe()] thisdenssamples= denssamples[afeindx+fehindx*binned.npixafe()] thismass= mass[afeindx+fehindx*binned.npixafe()] #thismasssamples= masssamples[afeindx+fehindx*binned.npixafe()] thisvelfit= velfits[afeindx+fehindx*binned.npixafe()] thesevelsamples= velsamples[afeindx+fehindx*binned.npixafe()] thisvelrfit= velrfits[afeindx+fehindx*binned.npixafe()] thesevelrsamples= velrsamples[afeindx+fehindx*binned.npixafe()] if thisdensfit is None: continue if len(data) < options.minndata: continue out['feh'][nout]= binned.feh(ii) out[nout]['afe']= binned.afe(jj) if options.densmodel.lower() == 'hwr' \ or options.densmodel.lower() == 'dblexp': out[nout]['hz']= numpy.exp(thisdensfit[0])*1000. if options.densmodel.lower() == 'dblexp': out[nout]['hr']= numpy.exp(-thisdensfit[1]) else: out[nout]['hr']= numpy.exp(thisdensfit[1]) out[nout]['bc']= thisdensfit[2] theseerrors= [] xs= numpy.array([s[0] for s in thisdenssamples]) theseerrors.append(0.5*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) out[nout]['hz_err']= theseerrors[0]*1000. if options.densmodel.lower() == 'dblexp': xs= numpy.array([-s[1] for s in thisdenssamples]) else: xs= numpy.array([s[1] for s in thisdenssamples]) theseerrors.append(0.5*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs)))) out[nout]['hr_err']= theseerrors[1] #mass if options.sample.lower() == 'k': out[nout]['mass']= numpy.nan else: out[nout]['mass']= thismass/10.**6. #out[nout]['mass_err']= numpy.std(numpy.array(thismasssamples)/10.**6.) #Velocities if options.velmodel.lower() == 'hwr': out[nout]['sz']= numpy.exp(thisvelfit[1]) out[nout]['hsz']= numpy.exp(thisvelfit[4]) out[nout]['sr']= numpy.exp(thisvelrfit[1]) out[nout]['hsr']= numpy.exp(thisvelrfit[4]) out[nout]['p1']= thisvelfit[2] out[nout]['p2']= thisvelfit[3] zsorted= sorted(numpy.fabs(data.zc+_ZSUN)) out[nout]['zmin']= zsorted[int(numpy.ceil(0.16*len(zsorted)))]*1000. out[nout]['zmax']= zsorted[int(numpy.floor(0.84*len(zsorted)))]*1000. out[nout]['zmedian']= numpy.median(numpy.fabs(data.zc)-_ZSUN)*1000. #Errors xs= numpy.array([s[1] for s in thesevelsamples]) out[nout]['sz_err']= 0.5*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs))) xs= numpy.array([s[4] for s in thesevelsamples]) out[nout]['hsz_err']= 0.5*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs))) xs= numpy.array([s[2] for s in thesevelsamples]) out[nout]['p1_err']= numpy.std(xs) xs= numpy.array([s[3] for s in thesevelsamples]) out[nout]['p2_err']= numpy.std(xs) xs= numpy.exp(numpy.array([s[1] for s in thesevelsamples])) ys= numpy.array([s[2] for s in thesevelsamples]) out[nout]['szp1_corr']= numpy.corrcoef(xs,ys)[0,1] ys= numpy.array([s[3] for s in thesevelsamples]) out[nout]['szp2_corr']= numpy.corrcoef(xs,ys)[0,1] xs= numpy.array([s[2] for s in thesevelsamples]) out[nout]['p1p2_corr']= numpy.corrcoef(xs,ys)[0,1] xs= numpy.exp(numpy.array([s[4] for s in thesevelsamples])) ys= numpy.exp(numpy.array([s[1] for s in thesevelsamples])) out[nout]['szhsz_corr']= numpy.corrcoef(xs,ys)[0,1] ys= numpy.array([s[2] for s in thesevelsamples]) out[nout]['p1hsz_corr']= numpy.corrcoef(xs,ys)[0,1] ys= numpy.array([s[3] for s in thesevelsamples]) out[nout]['p2hsz_corr']= numpy.corrcoef(xs,ys)[0,1] xs= numpy.array([s[1] for s in thesevelrsamples]) out[nout]['sr_err']= 0.5*(-numpy.exp(numpy.mean(xs)-numpy.std(xs))+numpy.exp(numpy.mean(xs)+numpy.std(xs))) nout+= 1 #Write output fitsio.write(options.outfile,out,clobber=True)