def test_logistic(n=200,
                  p=30,
                  burnin=2000,
                  ndraw=8000,
                  compute_interval=False,
                  sandwich=True,
                  selected=False,
                  s=6,
                  snr=10,
                  nsim=None):

    X, y, beta, lasso_active = logistic_instance(n=n,
                                                 p=p,
                                                 snr=snr,
                                                 s=s,
                                                 scale=False,
                                                 center=False,
                                                 rho=0.1)
    n, p = X.shape

    lam = 0.6 * np.mean(
        np.fabs(np.dot(X.T, np.random.standard_normal((n, 10000)))).max(0))

    L = randomized_logistic(
        y,
        X,
        lam, (True, 0.4 * np.diag(np.sqrt(np.diag(np.dot(X.T, X))))),
        sandwich=sandwich,
        selected=selected)
    L.fit()

    if (set(range(s)).issubset(L.active) and L.active.shape[0] > s):
        L.unbiased_estimate[:] = np.zeros(p)
        L.constraints.mean[:p] = 0 * L.unbiased_estimate

        v = np.zeros_like(L.active)
        v[s] = 1.
        P0, interval = L.hypothesis_test(v,
                                         burnin=burnin,
                                         ndraw=ndraw,
                                         compute_interval=compute_interval)
        target = (beta[L.active] * v).sum()
        estimate = (L.unbiased_estimate[:L.active.shape[0]] * v).sum()
        low, hi = interval

        v = np.zeros_like(L.active)
        v[0] = 1.
        PA, _ = L.hypothesis_test(v,
                                  burnin=burnin,
                                  ndraw=ndraw,
                                  compute_interval=compute_interval)

        return P0, PA, L
Exemple #2
0
def test_logistic_saturated_active_coordinate():
    s, n, p = 5, 200, 20

    randomizer = randomization.laplace((p, ), scale=1.)
    X, y, beta, _ = logistic_instance(n=n, p=p, s=s, rho=0.1, snr=14)

    nonzero = np.where(beta)[0]
    lam_frac = 1.

    loss = rr.glm.logistic(X, y)
    epsilon = 1.

    lam = lam_frac * np.mean(
        np.fabs(np.dot(X.T, np.random.binomial(1, 1. / 2, (n, 10000)))).max(0))
    W = np.ones(p) * lam
    penalty = rr.group_lasso(np.arange(p),
                             weights=dict(zip(np.arange(p), W)),
                             lagrange=1.)

    print(lam)
    # our randomization

    M_est1 = glm_group_lasso(loss, epsilon, penalty, randomizer)

    mv = multiple_queries([M_est1])
    mv.solve()

    active = M_est1.selection_variable['variables']
    nactive = active.sum()
    if set(nonzero).issubset(np.nonzero(active)[0]):

        active_set = np.nonzero(active)[0]
        inactive_selected = I = [
            i for i in np.arange(active_set.shape[0])
            if active_set[i] not in nonzero
        ]
        active_selected = A = [
            i for i in np.arange(active_set.shape[0])
            if active_set[i] in nonzero
        ]

        idx = A[0]
        inactive = ~M_est1.selection_variable['variables']
        boot_target, target_observed = pairs_bootstrap_glm(loss,
                                                           active,
                                                           inactive=inactive)

        def active_target(indices):
            result = boot_target(indices)
            return result[idx]

        active_observed = np.zeros(1)
        active_observed[0] = target_observed[idx]

        # the active_observed[1:] is only used as a
        # starting point for chain -- could be 0
        # active_observed[1:] = target_observed[nactive:]

        form_covariances = glm_nonparametric_bootstrap(n, n)

        mv.setup_sampler(form_covariances)
        target_sampler = mv.setup_target(active_target, active_observed)
        test_stat = lambda x: x[0]
        pval = target_sampler.hypothesis_test(
            test_stat, test_stat(active_observed), burnin=10000,
            ndraw=10000)  # twosided by default
        return pval, True
Exemple #3
0
def test_overall_null_two_queries():
    s, n, p = 5, 200, 20

    randomizer = randomization.laplace((p, ), scale=0.5)
    X, y, beta, _ = logistic_instance(n=n, p=p, s=s, rho=0.1, snr=14)

    nonzero = np.where(beta)[0]
    lam_frac = 1.

    loss = rr.glm.logistic(X, y)
    epsilon = 1. / np.sqrt(n)

    lam = lam_frac * np.mean(
        np.fabs(np.dot(X.T, np.random.binomial(1, 1. / 2, (n, 10000)))).max(0))
    W = np.ones(p) * lam
    W[0] = 0  # use at least some unpenalized
    penalty = rr.group_lasso(np.arange(p),
                             weights=dict(zip(np.arange(p), W)),
                             lagrange=1.)
    # first randomization

    M_est1 = glm_group_lasso(loss, epsilon, penalty, randomizer)
    M_est1.solve()
    bootstrap_score1 = M_est1.setup_sampler(scaling=2.)

    # second randomization

    M_est2 = glm_group_lasso(loss, epsilon, penalty, randomizer)
    M_est2.solve()
    bootstrap_score2 = M_est2.setup_sampler(scaling=2.)

    # we take target to be union of two active sets

    active = M_est1.selection_variable[
        'variables'] + M_est2.selection_variable['variables']

    if set(nonzero).issubset(np.nonzero(active)[0]):
        boot_target, target_observed = pairs_bootstrap_glm(loss, active)

        # target are all true null coefficients selected

        sampler = lambda: np.random.choice(n, size=(n, ), replace=True)
        target_cov, cov1, cov2 = bootstrap_cov(sampler,
                                               boot_target,
                                               cross_terms=(bootstrap_score1,
                                                            bootstrap_score2))

        active_set = np.nonzero(active)[0]
        inactive_selected = I = [
            i for i in np.arange(active_set.shape[0])
            if active_set[i] not in nonzero
        ]

        # is it enough only to bootstrap the inactive ones?
        # seems so...

        if not I:
            return None

        A1, b1 = M_est1.linear_decomposition(cov1[I], target_cov[I][:, I],
                                             target_observed[I])
        A2, b2 = M_est2.linear_decomposition(cov2[I], target_cov[I][:, I],
                                             target_observed[I])

        target_inv_cov = np.linalg.inv(target_cov[I][:, I])

        initial_state = np.hstack([
            target_observed[I], M_est1.observed_opt_state,
            M_est2.observed_opt_state
        ])

        ntarget = len(I)
        target_slice = slice(0, ntarget)
        opt_slice1 = slice(ntarget, p + ntarget)
        opt_slice2 = slice(p + ntarget, 2 * p + ntarget)

        def target_gradient(state):
            # with many samplers, we will add up the `target_slice` component
            # many target_grads
            # and only once do the Gaussian addition of full_grad

            target = state[target_slice]
            opt_state1 = state[opt_slice1]
            opt_state2 = state[opt_slice2]
            target_grad1 = M_est1.randomization_gradient(
                target, (A1, b1), opt_state1)
            target_grad2 = M_est2.randomization_gradient(
                target, (A2, b2), opt_state2)

            full_grad = np.zeros_like(state)
            full_grad[opt_slice1] = -target_grad1[1]
            full_grad[opt_slice2] = -target_grad2[1]
            full_grad[target_slice] -= target_grad1[0] + target_grad2[0]
            full_grad[target_slice] -= target_inv_cov.dot(target)

            return full_grad

        def target_projection(state):
            opt_state1 = state[opt_slice1]
            state[opt_slice1] = M_est1.projection(opt_state1)
            opt_state2 = state[opt_slice2]
            state[opt_slice2] = M_est2.projection(opt_state2)
            return state

        target_langevin = projected_langevin(initial_state, target_gradient,
                                             target_projection,
                                             .5 / (2 * p + 1))

        Langevin_steps = 10000
        burning = 2000
        samples = []
        for i in range(Langevin_steps):
            target_langevin.next()
            if (i >= burning):
                samples.append(target_langevin.state[target_slice].copy())

        test_stat = lambda x: np.linalg.norm(x)
        observed = test_stat(target_observed[I])
        sample_test_stat = np.array([test_stat(x) for x in samples])

        family = discrete_family(sample_test_stat,
                                 np.ones_like(sample_test_stat))
        pval = family.ccdf(0, observed)
        return pval, False
Exemple #4
0
def test_one_inactive_coordinate_handcoded():
    s, n, p = 5, 200, 20

    randomizer = randomization.laplace((p, ), scale=1.)
    X, y, beta, _ = logistic_instance(n=n, p=p, s=s, rho=0.1, snr=14)

    nonzero = np.where(beta)[0]
    lam_frac = 1.

    loss = rr.glm.logistic(X, y)
    epsilon = 1.

    lam = lam_frac * np.mean(
        np.fabs(np.dot(X.T, np.random.binomial(1, 1. / 2, (n, 10000)))).max(0))
    W = np.ones(p) * lam
    W += lam * np.arange(p) / 200
    W[0] = 0
    penalty = rr.group_lasso(np.arange(p),
                             weights=dict(zip(np.arange(p), W)),
                             lagrange=1.)

    print(lam)
    # our randomization

    M_est1 = glm_group_lasso(loss, epsilon, penalty, randomizer)
    M_est1.solve()
    bootstrap_score1 = M_est1.setup_sampler()

    active = M_est1.selection_variable['variables']
    if set(nonzero).issubset(np.nonzero(active)[0]):
        boot_target, target_observed = pairs_bootstrap_glm(loss, active)

        # target are all true null coefficients selected

        sampler = lambda: np.random.choice(n, size=(n, ), replace=True)
        target_cov, cov1 = bootstrap_cov(sampler,
                                         boot_target,
                                         cross_terms=(bootstrap_score1, ))

        # have checked that covariance up to here agrees with other test_glm_langevin example

        active_set = np.nonzero(active)[0]
        inactive_selected = I = [
            i for i in np.arange(active_set.shape[0])
            if active_set[i] not in nonzero
        ]

        # is it enough only to bootstrap the inactive ones?
        # seems so...

        if not I:
            return None

        # take the first inactive one
        I = I[:1]
        A1, b1 = M_est1.linear_decomposition(cov1[I], target_cov[I][:, I],
                                             target_observed[I])

        print(I, 'I', target_observed[I])
        target_inv_cov = np.linalg.inv(target_cov[I][:, I])

        initial_state = np.hstack(
            [target_observed[I], M_est1.observed_opt_state])

        ntarget = len(I)
        target_slice = slice(0, ntarget)
        opt_slice1 = slice(ntarget, p + ntarget)

        def target_gradient(state):
            # with many samplers, we will add up the `target_slice` component
            # many target_grads
            # and only once do the Gaussian addition of full_grad

            target = state[target_slice]
            opt_state1 = state[opt_slice1]
            target_grad1 = M_est1.randomization_gradient(
                target, (A1, b1), opt_state1)

            full_grad = np.zeros_like(state)
            full_grad[opt_slice1] = -target_grad1[1]
            full_grad[target_slice] -= target_grad1[0]
            full_grad[target_slice] -= target_inv_cov.dot(target)

            return full_grad

        def target_projection(state):
            opt_state1 = state[opt_slice1]
            state[opt_slice1] = M_est1.projection(opt_state1)
            return state

        target_langevin = projected_langevin(initial_state, target_gradient,
                                             target_projection, 1. / p)

        Langevin_steps = 10000
        burning = 2000
        samples = []
        for i in range(Langevin_steps + burning):
            target_langevin.next()
            if (i > burning):
                samples.append(target_langevin.state[target_slice].copy())

        test_stat = lambda x: x
        observed = test_stat(target_observed[I])
        sample_test_stat = np.array([test_stat(x) for x in samples])

        family = discrete_family(sample_test_stat,
                                 np.ones_like(sample_test_stat))
        pval = family.ccdf(0, observed)
        pval = 2 * min(pval, 1 - pval)

        _i = I[0]
        naive_Z = target_observed[_i] / np.sqrt(target_cov[_i, _i])
        naive_pval = ndist.sf(np.fabs(naive_Z))
        naive_pval = 2 * min(naive_pval, 1 - naive_pval)
        print('naive Z', naive_Z, naive_pval)
        return pval, naive_pval, False