def report(niter=50, **kwargs): # these are all our null tests fn_names = ['test_gaussian_pvals', 'test_logistic_pvals', 'test_data_carving_gaussian', 'test_data_carving_sqrt_lasso', 'test_data_carving_logistic', 'test_data_carving_poisson', 'test_data_carving_coxph' ] dfs = [] for fn in fn_names: fn = reports.reports[fn] dfs.append(reports.collect_multiple_runs(fn['test'], fn['columns'], niter, reports.summarize_all)) dfs = pd.concat(dfs) fig = reports.pvalue_plot(dfs) fig.savefig('algorithms_pvalues.pdf') fig = reports.split_pvalue_plot(dfs) fig.savefig('algorithms_split_pvalues.pdf')
def report(niter=50, **kwargs): _report = goodness_of_fit_report = reports.reports['test_goodness_of_fit'] runs = reports.collect_multiple_runs(_report['test'], _report['columns'], niter, reports.summarize_all, **kwargs) fig = reports.pvalue_plot(runs) fig.savefig('sqrtlasso_goodness_of_fit.pdf')
def report(niter=50, **kwargs): condition_report = reports.reports['test_condition'] runs = reports.collect_multiple_runs(condition_report['test'], condition_report['columns'], niter, reports.summarize_all, **kwargs) fig = reports.pvalue_plot(runs) fig.savefig('conditional_pivots.pdf')
def report(niter=50, **kwargs): fixedX_report = reports.reports['test_fixedX'] runs = reports.collect_multiple_runs(fixedX_report['test'], fixedX_report['columns'], niter, reports.summarize_all, **kwargs) fig = reports.pvalue_plot(runs) fig.savefig( 'fixedX_pivots.pdf') # will have both bootstrap and CLT on plot
def report(niter=100, design="random", **kwargs): if design == "fixed": X, _, _, _, _ = gaussian_instance(**kwargs) kwargs.update({'X': X}) intervals_report = reports.reports['test_cv_corrected_nonrandomized_lasso'] screened_results = reports.collect_multiple_runs( intervals_report['test'], intervals_report['columns'], niter, reports.summarize_all, **kwargs) screened_results.to_pickle("cv_corrected_nonrandomized_lasso.pkl") results = pd.read_pickle("cv_corrected_nonrandomized_lasso.pkl") fig = reports.pvalue_plot(results, label='CV corrected') fig.suptitle("CV corrected norandomized Lasso pivots", fontsize=20) fig.savefig('cv_corrected_nonrandomized_lasso_pivots.pdf')
def report(niter=50, **kwargs): # these are all our null tests fn_names = ['test_threshold_score'] dfs = [] for fn in fn_names: fn = reports.reports[fn] dfs.append( reports.collect_multiple_runs(fn['test'], fn['columns'], niter, reports.summarize_all)) dfs = pd.concat(dfs) fig = reports.pvalue_plot(dfs, colors=['r', 'g']) fig.savefig( 'threshold_pvalues.pdf') # will have both bootstrap and CLT on plot
def report(niter=50, **kwargs): # these are all our null tests fn_names = ['test_parametric_covariance_small', 'test_multiple_queries_small', 'test_multiple_queries_individual_coeff_small'] dfs = [] for fn in fn_names: fn = reports.reports[fn] dfs.append(reports.collect_multiple_runs(fn['test'], fn['columns'], niter, reports.summarize_all)) dfs = pd.concat(dfs) fig = reports.pvalue_plot(dfs, colors=['r', 'g']) fig.savefig('randomization_to_zero_pvalues.pdf') # will have both bootstrap and CLT on plot
def report(niter=50): # these are all our null tests fn_names = [ 'test_overall_null_two_queries', 'test_one_inactive_coordinate_handcoded' ] dfs = [] for fn in fn_names: fn = reports.reports[fn] dfs.append( reports.collect_multiple_runs(fn['test'], fn['columns'], niter, reports.summarize_all)) dfs = pd.concat(dfs) fig = reports.pvalue_plot(dfs, colors=['r', 'g']) fig = reports.naive_pvalue_plot(dfs, fig=fig, colors=['k', 'b']) fig.savefig('Mest_pvalues.pdf') # will have both bootstrap and CLT on plot