def cycle_alerts(duration=200, is_metric=False): alerts = list(EVENTS.keys()) print(alerts) alerts = [ EventName.preDriverDistracted, EventName.promptDriverDistracted, EventName.driverDistracted ] CP = CarInterface.get_params("HONDA CIVIC 2016 TOURING") sm = messaging.SubMaster([ 'deviceState', 'pandaState', 'roadCameraState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman' ]) controls_state = messaging.pub_sock('controlsState') deviceState = messaging.pub_sock('deviceState') idx, last_alert_millis = 0, 0 events = Events() AM = AlertManager() frame = 0 while 1: if frame % duration == 0: idx = (idx + 1) % len(alerts) events.clear() events.add(alerts[idx]) current_alert_types = [ ET.PERMANENT, ET.USER_DISABLE, ET.IMMEDIATE_DISABLE, ET.SOFT_DISABLE, ET.PRE_ENABLE, ET.NO_ENTRY, ET.ENABLE, ET.WARNING ] a = events.create_alerts(current_alert_types, [CP, sm, is_metric]) AM.add_many(frame, a) AM.process_alerts(frame) dat = messaging.new_message() dat.init('controlsState') dat.controlsState.alertText1 = AM.alert_text_1 dat.controlsState.alertText2 = AM.alert_text_2 dat.controlsState.alertSize = AM.alert_size dat.controlsState.alertStatus = AM.alert_status dat.controlsState.alertBlinkingRate = AM.alert_rate dat.controlsState.alertType = AM.alert_type dat.controlsState.alertSound = AM.audible_alert controls_state.send(dat.to_bytes()) dat = messaging.new_message() dat.init('deviceState') dat.deviceState.started = True deviceState.send(dat.to_bytes()) frame += 1 time.sleep(0.01)
class Controls: def __init__(self, sm=None, pm=None, can_sock=None): config_realtime_process(3, Priority.CTRL_HIGH) # Setup sockets self.pm = pm if self.pm is None: self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams']) self.sm = sm if self.sm is None: self.sm = messaging.SubMaster(['thermal', 'health', 'model', 'liveCalibration', 'dMonitoringState', 'plan', 'pathPlan', 'liveLocationKalman']) self.can_sock = can_sock if can_sock is None: can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100 self.can_sock = messaging.sub_sock('can', timeout=can_timeout) # wait for one health and one CAN packet hw_type = messaging.recv_one(self.sm.sock['health']).health.hwType has_relay = hw_type in [HwType.blackPanda, HwType.uno, HwType.dos] print("Waiting for CAN messages...") get_one_can(self.can_sock) self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'], has_relay) # read params params = Params() self.is_metric = params.get("IsMetric", encoding='utf8') == "1" self.is_ldw_enabled = params.get("IsLdwEnabled", encoding='utf8') == "1" internet_needed = (params.get("Offroad_ConnectivityNeeded", encoding='utf8') is not None) and (params.get("DisableUpdates") != b"1") community_feature_toggle = params.get("CommunityFeaturesToggle", encoding='utf8') == "1" openpilot_enabled_toggle = params.get("OpenpilotEnabledToggle", encoding='utf8') == "1" passive = params.get("Passive", encoding='utf8') == "1" or \ internet_needed or not openpilot_enabled_toggle # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' # If stock camera is disconnected, we loaded car controls and it's not dashcam mode controller_available = self.CP.enableCamera and self.CI.CC is not None and not passive and not self.CP.dashcamOnly community_feature_disallowed = self.CP.communityFeature and not community_feature_toggle self.read_only = not car_recognized or not controller_available or \ self.CP.dashcamOnly or community_feature_disallowed if self.read_only: self.CP.safetyModel = car.CarParams.SafetyModel.noOutput # Write CarParams for radard and boardd safety mode cp_bytes = self.CP.to_bytes() params.put("CarParams", cp_bytes) put_nonblocking("CarParamsCache", cp_bytes) self.CC = car.CarControl.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP, self.CI.compute_gb) self.VM = VehicleModel(self.CP) if self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP) elif self.CP.lateralTuning.which() == 'indi': self.LaC = LatControlINDI(self.CP) elif self.CP.lateralTuning.which() == 'lqr': self.LaC = LatControlLQR(self.CP) self.state = State.disabled self.enabled = False self.active = False self.can_rcv_error = False self.soft_disable_timer = 0 self.v_cruise_kph = 255 self.v_cruise_kph_last = 0 self.mismatch_counter = 0 self.can_error_counter = 0 self.last_blinker_frame = 0 self.saturated_count = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.sm['liveCalibration'].calStatus = Calibration.CALIBRATED self.sm['thermal'].freeSpace = 1. self.sm['dMonitoringState'].events = [] self.sm['dMonitoringState'].awarenessStatus = 1. self.sm['dMonitoringState'].faceDetected = False self.startup_event = get_startup_event(car_recognized, controller_available, hw_type) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if internet_needed: self.events.add(EventName.internetConnectivityNeeded, static=True) if community_feature_disallowed: self.events.add(EventName.communityFeatureDisallowed, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) if hw_type == HwType.whitePanda: self.events.add(EventName.whitePandaUnsupported, static=True) # controlsd is driven by can recv, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) self.prof = Profiler(False) # off by default def update_events(self, CS): """Compute carEvents from carState""" self.events.clear() self.events.add_from_msg(CS.events) self.events.add_from_msg(self.sm['dMonitoringState'].events) # Handle startup event if self.startup_event is not None: self.events.add(self.startup_event) self.startup_event = None # Create events for battery, temperature, disk space, and memory if self.sm['thermal'].batteryPercent < 1 and self.sm['thermal'].chargingError: # at zero percent battery, while discharging, OP should not allowed self.events.add(EventName.lowBattery) if self.sm['thermal'].thermalStatus >= ThermalStatus.red: self.events.add(EventName.overheat) if self.sm['thermal'].freeSpace < 0.07: # under 7% of space free no enable allowed self.events.add(EventName.outOfSpace) if self.sm['thermal'].memUsedPercent > 90: self.events.add(EventName.lowMemory) # Alert if fan isn't spinning for 5 seconds if self.sm['health'].hwType in [HwType.uno, HwType.dos]: if self.sm['health'].fanSpeedRpm == 0 and self.sm['thermal'].fanSpeed > 50: if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 5.0: self.events.add(EventName.fanMalfunction) else: self.last_functional_fan_frame = self.sm.frame # Handle calibration status cal_status = self.sm['liveCalibration'].calStatus if cal_status != Calibration.CALIBRATED: if cal_status == Calibration.UNCALIBRATED: self.events.add(EventName.calibrationIncomplete) else: self.events.add(EventName.calibrationInvalid) # Handle lane change if self.sm['pathPlan'].laneChangeState == LaneChangeState.preLaneChange: direction = self.sm['pathPlan'].laneChangeDirection if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \ (CS.rightBlindspot and direction == LaneChangeDirection.right): self.events.add(EventName.laneChangeBlocked) else: if direction == LaneChangeDirection.left: self.events.add(EventName.preLaneChangeLeft) else: self.events.add(EventName.preLaneChangeRight) elif self.sm['pathPlan'].laneChangeState in [LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing]: self.events.add(EventName.laneChange) if self.can_rcv_error or (not CS.canValid and self.sm.frame > 5 / DT_CTRL): self.events.add(EventName.canError) if self.mismatch_counter >= 200: self.events.add(EventName.controlsMismatch) if not self.sm.alive['plan'] and self.sm.alive['pathPlan']: # only plan not being received: radar not communicating self.events.add(EventName.radarCommIssue) elif not self.sm.all_alive_and_valid(): self.events.add(EventName.commIssue) if not self.sm['pathPlan'].mpcSolutionValid: self.events.add(EventName.plannerError) if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR: if self.sm.frame > 5 / DT_CTRL: # Give locationd some time to receive all the inputs self.events.add(EventName.sensorDataInvalid) if not self.sm['liveLocationKalman'].gpsOK and (self.distance_traveled > 1000): # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes if not (SIMULATION or NOSENSOR): # TODO: send GPS in carla self.events.add(EventName.noGps) if not self.sm['pathPlan'].paramsValid: self.events.add(EventName.vehicleModelInvalid) if not self.sm['liveLocationKalman'].posenetOK: self.events.add(EventName.posenetInvalid) if not self.sm['liveLocationKalman'].deviceStable: self.events.add(EventName.deviceFalling) if not self.sm['plan'].radarValid: self.events.add(EventName.radarFault) if self.sm['plan'].radarCanError: self.events.add(EventName.radarCanError) if log.HealthData.FaultType.relayMalfunction in self.sm['health'].faults: self.events.add(EventName.relayMalfunction) if self.sm['plan'].fcw: self.events.add(EventName.fcw) if self.sm['model'].frameDropPerc > 1 and (not SIMULATION): self.events.add(EventName.modeldLagging) # Only allow engagement with brake pressed when stopped behind another stopped car if CS.brakePressed and self.sm['plan'].vTargetFuture >= STARTING_TARGET_SPEED \ and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3: self.events.add(EventName.noTarget) def data_sample(self): """Receive data from sockets and update carState""" # Update carState from CAN can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True) CS = self.CI.update(self.CC, can_strs) self.sm.update(0) # Check for CAN timeout if not can_strs: self.can_error_counter += 1 self.can_rcv_error = True else: self.can_rcv_error = False # When the panda and controlsd do not agree on controls_allowed # we want to disengage openpilot. However the status from the panda goes through # another socket other than the CAN messages and one can arrive earlier than the other. # Therefore we allow a mismatch for two samples, then we trigger the disengagement. if not self.enabled: self.mismatch_counter = 0 if not self.sm['health'].controlsAllowed and self.enabled: self.mismatch_counter += 1 self.distance_traveled += CS.vEgo * DT_CTRL return CS def state_transition(self, CS): """Compute conditional state transitions and execute actions on state transitions""" self.v_cruise_kph_last = self.v_cruise_kph # if stock cruise is completely disabled, then we can use our own set speed logic if not self.CP.enableCruise: self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.buttonEvents, self.enabled) elif self.CP.enableCruise and CS.cruiseState.enabled: self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH # decrease the soft disable timer at every step, as it's reset on # entrance in SOFT_DISABLING state self.soft_disable_timer = max(0, self.soft_disable_timer - 1) self.current_alert_types = [ET.PERMANENT] # ENABLED, PRE ENABLING, SOFT DISABLING if self.state != State.disabled: # user and immediate disable always have priority in a non-disabled state if self.events.any(ET.USER_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.USER_DISABLE) elif self.events.any(ET.IMMEDIATE_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.IMMEDIATE_DISABLE) else: # ENABLED if self.state == State.enabled: if self.events.any(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = 300 # 3s self.current_alert_types.append(ET.SOFT_DISABLE) # SOFT DISABLING elif self.state == State.softDisabling: if not self.events.any(ET.SOFT_DISABLE): # no more soft disabling condition, so go back to ENABLED self.state = State.enabled elif self.events.any(ET.SOFT_DISABLE) and self.soft_disable_timer > 0: self.current_alert_types.append(ET.SOFT_DISABLE) elif self.soft_disable_timer <= 0: self.state = State.disabled # PRE ENABLING elif self.state == State.preEnabled: if not self.events.any(ET.PRE_ENABLE): self.state = State.enabled else: self.current_alert_types.append(ET.PRE_ENABLE) # DISABLED elif self.state == State.disabled: if self.events.any(ET.ENABLE): if self.events.any(ET.NO_ENTRY): self.current_alert_types.append(ET.NO_ENTRY) else: if self.events.any(ET.PRE_ENABLE): self.state = State.preEnabled else: self.state = State.enabled self.current_alert_types.append(ET.ENABLE) self.v_cruise_kph = initialize_v_cruise(CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last) # Check if actuators are enabled self.active = self.state == State.enabled or self.state == State.softDisabling if self.active: self.current_alert_types.append(ET.WARNING) # Check if openpilot is engaged self.enabled = self.active or self.state == State.preEnabled def state_control(self, CS): """Given the state, this function returns an actuators packet""" plan = self.sm['plan'] path_plan = self.sm['pathPlan'] actuators = car.CarControl.Actuators.new_message() if CS.leftBlinker or CS.rightBlinker: self.last_blinker_frame = self.sm.frame # State specific actions if not self.active: self.LaC.reset() self.LoC.reset(v_pid=CS.vEgo) plan_age = DT_CTRL * (self.sm.frame - self.sm.rcv_frame['plan']) # no greater than dt mpc + dt, to prevent too high extraps dt = min(plan_age, LON_MPC_STEP + DT_CTRL) + DT_CTRL a_acc_sol = plan.aStart + (dt / LON_MPC_STEP) * (plan.aTarget - plan.aStart) v_acc_sol = plan.vStart + dt * (a_acc_sol + plan.aStart) / 2.0 # Gas/Brake PID loop actuators.gas, actuators.brake = self.LoC.update(self.active, CS, v_acc_sol, plan.vTargetFuture, a_acc_sol, self.CP) # Steering PID loop and lateral MPC actuators.steer, actuators.steerAngle, lac_log = self.LaC.update(self.active, CS, self.CP, path_plan) # Check for difference between desired angle and angle for angle based control angle_control_saturated = self.CP.steerControlType == car.CarParams.SteerControlType.angle and \ abs(actuators.steerAngle - CS.steeringAngle) > STEER_ANGLE_SATURATION_THRESHOLD if angle_control_saturated and not CS.steeringPressed and self.active: self.saturated_count += 1 else: self.saturated_count = 0 # Send a "steering required alert" if saturation count has reached the limit if (lac_log.saturated and not CS.steeringPressed) or \ (self.saturated_count > STEER_ANGLE_SATURATION_TIMEOUT): # Check if we deviated from the path left_deviation = actuators.steer > 0 and path_plan.dPoly[3] > 0.1 right_deviation = actuators.steer < 0 and path_plan.dPoly[3] < -0.1 if left_deviation or right_deviation: self.events.add(EventName.steerSaturated) return actuators, v_acc_sol, a_acc_sol, lac_log def publish_logs(self, CS, start_time, actuators, v_acc, a_acc, lac_log): """Send actuators and hud commands to the car, send controlsstate and MPC logging""" CC = car.CarControl.new_message() CC.enabled = self.enabled CC.actuators = actuators CC.cruiseControl.override = True CC.cruiseControl.cancel = not self.CP.enableCruise or (not self.enabled and CS.cruiseState.enabled) # Some override values for Honda # brake discount removes a sharp nonlinearity brake_discount = (1.0 - clip(actuators.brake * 3., 0.0, 1.0)) speed_override = max(0.0, (self.LoC.v_pid + CS.cruiseState.speedOffset) * brake_discount) CC.cruiseControl.speedOverride = float(speed_override if self.CP.enableCruise else 0.0) CC.cruiseControl.accelOverride = self.CI.calc_accel_override(CS.aEgo, self.sm['plan'].aTarget, CS.vEgo, self.sm['plan'].vTarget) CC.hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS) CC.hudControl.speedVisible = self.enabled CC.hudControl.lanesVisible = self.enabled CC.hudControl.leadVisible = self.sm['plan'].hasLead right_lane_visible = self.sm['pathPlan'].rProb > 0.5 left_lane_visible = self.sm['pathPlan'].lProb > 0.5 CC.hudControl.rightLaneVisible = bool(right_lane_visible) CC.hudControl.leftLaneVisible = bool(left_lane_visible) recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \ and not self.active and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED meta = self.sm['model'].meta if len(meta.desirePrediction) and ldw_allowed: l_lane_change_prob = meta.desirePrediction[Desire.laneChangeLeft - 1] r_lane_change_prob = meta.desirePrediction[Desire.laneChangeRight - 1] l_lane_close = left_lane_visible and (self.sm['pathPlan'].lPoly[3] < (1.08 - CAMERA_OFFSET)) r_lane_close = right_lane_visible and (self.sm['pathPlan'].rPoly[3] > -(1.08 + CAMERA_OFFSET)) CC.hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) CC.hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart: self.events.add(EventName.ldw) clear_event = ET.WARNING if ET.WARNING not in self.current_alert_types else None alerts = self.events.create_alerts(self.current_alert_types, [self.CP, self.sm, self.is_metric]) self.AM.add_many(self.sm.frame, alerts, self.enabled) self.AM.process_alerts(self.sm.frame, clear_event) CC.hudControl.visualAlert = self.AM.visual_alert if not self.read_only: # send car controls over can can_sends = self.CI.apply(CC) self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid)) force_decel = (self.sm['dMonitoringState'].awarenessStatus < 0.) or \ (self.state == State.softDisabling) steer_angle_rad = (CS.steeringAngle - self.sm['pathPlan'].angleOffset) * CV.DEG_TO_RAD # controlsState dat = messaging.new_message('controlsState') dat.valid = CS.canValid controlsState = dat.controlsState controlsState.alertText1 = self.AM.alert_text_1 controlsState.alertText2 = self.AM.alert_text_2 controlsState.alertSize = self.AM.alert_size controlsState.alertStatus = self.AM.alert_status controlsState.alertBlinkingRate = self.AM.alert_rate controlsState.alertType = self.AM.alert_type controlsState.alertSound = self.AM.audible_alert controlsState.driverMonitoringOn = self.sm['dMonitoringState'].faceDetected controlsState.canMonoTimes = list(CS.canMonoTimes) controlsState.planMonoTime = self.sm.logMonoTime['plan'] controlsState.pathPlanMonoTime = self.sm.logMonoTime['pathPlan'] controlsState.enabled = self.enabled controlsState.active = self.active controlsState.vEgo = CS.vEgo controlsState.vEgoRaw = CS.vEgoRaw controlsState.angleSteers = CS.steeringAngle controlsState.curvature = self.VM.calc_curvature(steer_angle_rad, CS.vEgo) controlsState.steerOverride = CS.steeringPressed controlsState.state = self.state controlsState.engageable = not self.events.any(ET.NO_ENTRY) controlsState.longControlState = self.LoC.long_control_state controlsState.vPid = float(self.LoC.v_pid) controlsState.vCruise = float(self.v_cruise_kph) controlsState.upAccelCmd = float(self.LoC.pid.p) controlsState.uiAccelCmd = float(self.LoC.pid.i) controlsState.ufAccelCmd = float(self.LoC.pid.f) controlsState.angleSteersDes = float(self.LaC.angle_steers_des) controlsState.vTargetLead = float(v_acc) controlsState.aTarget = float(a_acc) controlsState.jerkFactor = float(self.sm['plan'].jerkFactor) controlsState.gpsPlannerActive = self.sm['plan'].gpsPlannerActive controlsState.vCurvature = self.sm['plan'].vCurvature controlsState.decelForModel = self.sm['plan'].longitudinalPlanSource == LongitudinalPlanSource.model controlsState.cumLagMs = -self.rk.remaining * 1000. controlsState.startMonoTime = int(start_time * 1e9) controlsState.mapValid = self.sm['plan'].mapValid controlsState.forceDecel = bool(force_decel) controlsState.canErrorCounter = self.can_error_counter if self.CP.lateralTuning.which() == 'pid': controlsState.lateralControlState.pidState = lac_log elif self.CP.lateralTuning.which() == 'lqr': controlsState.lateralControlState.lqrState = lac_log elif self.CP.lateralTuning.which() == 'indi': controlsState.lateralControlState.indiState = lac_log self.pm.send('controlsState', dat) # carState car_events = self.events.to_msg() cs_send = messaging.new_message('carState') cs_send.valid = CS.canValid cs_send.carState = CS cs_send.carState.events = car_events self.pm.send('carState', cs_send) # carEvents - logged every second or on change if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev): ce_send = messaging.new_message('carEvents', len(self.events)) ce_send.carEvents = car_events self.pm.send('carEvents', ce_send) self.events_prev = self.events.names.copy() # carParams - logged every 50 seconds (> 1 per segment) if (self.sm.frame % int(50. / DT_CTRL) == 0): cp_send = messaging.new_message('carParams') cp_send.carParams = self.CP self.pm.send('carParams', cp_send) # carControl cc_send = messaging.new_message('carControl') cc_send.valid = CS.canValid cc_send.carControl = CC self.pm.send('carControl', cc_send) # copy CarControl to pass to CarInterface on the next iteration self.CC = CC def step(self): start_time = sec_since_boot() self.prof.checkpoint("Ratekeeper", ignore=True) # Sample data from sockets and get a carState CS = self.data_sample() self.prof.checkpoint("Sample") self.update_events(CS) if not self.read_only: # Update control state self.state_transition(CS) self.prof.checkpoint("State transition") # Compute actuators (runs PID loops and lateral MPC) actuators, v_acc, a_acc, lac_log = self.state_control(CS) self.prof.checkpoint("State Control") # Publish data self.publish_logs(CS, start_time, actuators, v_acc, a_acc, lac_log) self.prof.checkpoint("Sent") def controlsd_thread(self): while True: self.step() self.rk.monitor_time() self.prof.display()
def cycle_alerts(duration=200, is_metric=False): # all alerts #alerts = list(EVENTS.keys()) # this plays each type of audible alert alerts = [ (EventName.buttonEnable, ET.ENABLE), (EventName.buttonCancel, ET.USER_DISABLE), (EventName.wrongGear, ET.NO_ENTRY), (EventName.vehicleModelInvalid, ET.SOFT_DISABLE), (EventName.accFaulted, ET.IMMEDIATE_DISABLE), # DM sequence (EventName.preDriverDistracted, ET.WARNING), (EventName.promptDriverDistracted, ET.WARNING), (EventName.driverDistracted, ET.WARNING), ] # debug alerts alerts = [ #(EventName.highCpuUsage, ET.NO_ENTRY), #(EventName.lowMemory, ET.PERMANENT), #(EventName.overheat, ET.PERMANENT), #(EventName.outOfSpace, ET.PERMANENT), #(EventName.modeldLagging, ET.PERMANENT), #(EventName.processNotRunning, ET.NO_ENTRY), #(EventName.commIssue, ET.NO_ENTRY), #(EventName.calibrationInvalid, ET.PERMANENT), (EventName.cameraMalfunction, ET.PERMANENT), (EventName.cameraFrameRate, ET.PERMANENT), ] cameras = ['roadCameraState', 'wideRoadCameraState', 'driverCameraState'] CS = car.CarState.new_message() CP = CarInterface.get_params("HONDA CIVIC 2016") sm = messaging.SubMaster([ 'deviceState', 'pandaStates', 'roadCameraState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman', 'managerState' ] + cameras) pm = messaging.PubMaster(['controlsState', 'pandaStates', 'deviceState']) events = Events() AM = AlertManager() frame = 0 while True: for alert, et in alerts: events.clear() events.add(alert) sm['deviceState'].freeSpacePercent = randperc() sm['deviceState'].memoryUsagePercent = int(randperc()) sm['deviceState'].cpuTempC = [randperc() for _ in range(3)] sm['deviceState'].gpuTempC = [randperc() for _ in range(3)] sm['deviceState'].cpuUsagePercent = [ int(randperc()) for _ in range(8) ] sm['modelV2'].frameDropPerc = randperc() if random.random() > 0.25: sm['modelV2'].velocity.x = [ random.random(), ] if random.random() > 0.25: CS.vEgo = random.random() procs = [ p.get_process_state_msg() for p in managed_processes.values() ] random.shuffle(procs) for i in range(random.randint(0, 10)): procs[i].shouldBeRunning = True sm['managerState'].processes = procs sm['liveCalibration'].rpyCalib = [ -1 * random.random() for _ in range(random.randint(0, 3)) ] for s in sm.data.keys(): prob = 0.3 if s in cameras else 0.08 sm.alive[s] = random.random() > prob sm.valid[s] = random.random() > prob sm.freq_ok[s] = random.random() > prob a = events.create_alerts([ et, ], [CP, CS, sm, is_metric, 0]) AM.add_many(frame, a) alert = AM.process_alerts(frame, []) print(alert) for _ in range(duration): dat = messaging.new_message() dat.init('controlsState') dat.controlsState.enabled = False if alert: dat.controlsState.alertText1 = alert.alert_text_1 dat.controlsState.alertText2 = alert.alert_text_2 dat.controlsState.alertSize = alert.alert_size dat.controlsState.alertStatus = alert.alert_status dat.controlsState.alertBlinkingRate = alert.alert_rate dat.controlsState.alertType = alert.alert_type dat.controlsState.alertSound = alert.audible_alert pm.send('controlsState', dat) dat = messaging.new_message() dat.init('deviceState') dat.deviceState.started = True pm.send('deviceState', dat) dat = messaging.new_message('pandaStates', 1) dat.pandaStates[0].ignitionLine = True dat.pandaStates[0].pandaType = log.PandaState.PandaType.uno pm.send('pandaStates', dat) frame += 1 time.sleep(DT_CTRL)
class Controls: def __init__(self, sm=None, pm=None, can_sock=None): config_realtime_process(4 if TICI else 3, Priority.CTRL_HIGH) # Setup sockets self.pm = pm if self.pm is None: self.pm = messaging.PubMaster([ 'sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams' ]) self.camera_packets = ["roadCameraState", "driverCameraState"] if TICI: self.camera_packets.append("wideRoadCameraState") params = Params() self.joystick_mode = params.get_bool("JoystickDebugMode") joystick_packet = ['testJoystick'] if self.joystick_mode else [] self.sm = sm if self.sm is None: ignore = ['driverCameraState', 'managerState' ] if SIMULATION else None self.sm = messaging.SubMaster( [ 'deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman', 'managerState', 'liveParameters', 'radarState' ] + self.camera_packets + joystick_packet, ignore_alive=ignore, ignore_avg_freq=['radarState', 'longitudinalPlan']) self.can_sock = can_sock if can_sock is None: can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100 self.can_sock = messaging.sub_sock('can', timeout=can_timeout) if TICI: self.log_sock = messaging.sub_sock('androidLog') # wait for one pandaState and one CAN packet print("Waiting for CAN messages...") get_one_can(self.can_sock) self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan']) # read params self.is_metric = params.get_bool("IsMetric") self.is_ldw_enabled = params.get_bool("IsLdwEnabled") community_feature_toggle = params.get_bool("CommunityFeaturesToggle") openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle") passive = params.get_bool("Passive") or not openpilot_enabled_toggle # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' controller_available = self.CI.CC is not None and not passive and not self.CP.dashcamOnly community_feature = self.CP.communityFeature or \ self.CP.fingerprintSource == car.CarParams.FingerprintSource.can community_feature_disallowed = community_feature and ( not community_feature_toggle) self.read_only = not car_recognized or not controller_available or \ self.CP.dashcamOnly or community_feature_disallowed if self.read_only: safety_config = car.CarParams.SafetyConfig.new_message() safety_config.safetyModel = car.CarParams.SafetyModel.noOutput self.CP.safetyConfigs = [safety_config] # Write CarParams for radard cp_bytes = self.CP.to_bytes() params.put("CarParams", cp_bytes) put_nonblocking("CarParamsCache", cp_bytes) self.CC = car.CarControl.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP) self.VM = VehicleModel(self.CP) if self.CP.steerControlType == car.CarParams.SteerControlType.angle: self.LaC = LatControlAngle(self.CP) elif self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'indi': self.LaC = LatControlINDI(self.CP) elif self.CP.lateralTuning.which() == 'lqr': self.LaC = LatControlLQR(self.CP) self.initialized = False self.state = State.disabled self.enabled = False self.active = False self.can_rcv_error = False self.soft_disable_timer = 0 self.v_cruise_kph = 255 self.v_cruise_kph_last = 0 self.mismatch_counter = 0 self.can_error_counter = 0 self.last_blinker_frame = 0 self.saturated_count = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.logged_comm_issue = False self.button_timers = { ButtonEvent.Type.decelCruise: 0, ButtonEvent.Type.accelCruise: 0 } # TODO: no longer necessary, aside from process replay self.sm['liveParameters'].valid = True self.startup_event = get_startup_event(car_recognized, controller_available, len(self.CP.carFw) > 0) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if community_feature_disallowed and car_recognized and not self.CP.dashcamOnly: self.events.add(EventName.communityFeatureDisallowed, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) elif self.read_only: self.events.add(EventName.dashcamMode, static=True) elif self.joystick_mode: self.events.add(EventName.joystickDebug, static=True) self.startup_event = None # controlsd is driven by can recv, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) self.prof = Profiler(False) # off by default def update_events(self, CS): """Compute carEvents from carState""" self.events.clear() self.events.add_from_msg(CS.events) self.events.add_from_msg(self.sm['driverMonitoringState'].events) # Handle startup event if self.startup_event is not None: self.events.add(self.startup_event) self.startup_event = None # Don't add any more events if not initialized if not self.initialized: self.events.add(EventName.controlsInitializing) return # Create events for battery, temperature, disk space, and memory if EON and (self.sm['peripheralState'].pandaType != PandaType.uno) and \ self.sm['deviceState'].batteryPercent < 1 and self.sm['deviceState'].chargingError: # at zero percent battery, while discharging, OP should not allowed self.events.add(EventName.lowBattery) if self.sm['deviceState'].thermalStatus >= ThermalStatus.red: self.events.add(EventName.overheat) if self.sm['deviceState'].freeSpacePercent < 7 and not SIMULATION: # under 7% of space free no enable allowed self.events.add(EventName.outOfSpace) # TODO: make tici threshold the same if self.sm['deviceState'].memoryUsagePercent > (90 if TICI else 65) and not SIMULATION: self.events.add(EventName.lowMemory) cpus = list( self.sm['deviceState'].cpuUsagePercent)[:(-1 if EON else None)] if max(cpus, default=0) > 95 and not SIMULATION: self.events.add(EventName.highCpuUsage) # Alert if fan isn't spinning for 5 seconds if self.sm['peripheralState'].pandaType in [ PandaType.uno, PandaType.dos ]: if self.sm['peripheralState'].fanSpeedRpm == 0 and self.sm[ 'deviceState'].fanSpeedPercentDesired > 50: if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 5.0: self.events.add(EventName.fanMalfunction) else: self.last_functional_fan_frame = self.sm.frame # Handle calibration status cal_status = self.sm['liveCalibration'].calStatus if cal_status != Calibration.CALIBRATED: if cal_status == Calibration.UNCALIBRATED: self.events.add(EventName.calibrationIncomplete) else: self.events.add(EventName.calibrationInvalid) # Handle lane change if self.sm[ 'lateralPlan'].laneChangeState == LaneChangeState.preLaneChange: direction = self.sm['lateralPlan'].laneChangeDirection if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \ (CS.rightBlindspot and direction == LaneChangeDirection.right): self.events.add(EventName.laneChangeBlocked) else: if direction == LaneChangeDirection.left: self.events.add(EventName.preLaneChangeLeft) else: self.events.add(EventName.preLaneChangeRight) elif self.sm['lateralPlan'].laneChangeState in [ LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing ]: self.events.add(EventName.laneChange) if self.can_rcv_error or not CS.canValid: self.events.add(EventName.canError) for i, pandaState in enumerate(self.sm['pandaStates']): # All pandas must match the list of safetyConfigs, and if outside this list, must be silent if i < len(self.CP.safetyConfigs): safety_mismatch = pandaState.safetyModel != self.CP.safetyConfigs[ i].safetyModel or pandaState.safetyParam != self.CP.safetyConfigs[ i].safetyParam else: safety_mismatch = pandaState.safetyModel != SafetyModel.silent if safety_mismatch or self.mismatch_counter >= 200: self.events.add(EventName.controlsMismatch) if not self.sm['liveParameters'].valid: self.events.add(EventName.vehicleModelInvalid) if len(self.sm['radarState'].radarErrors): self.events.add(EventName.radarFault) elif not self.sm.valid["pandaStates"]: self.events.add(EventName.usbError) elif not self.sm.all_alive_and_valid(): self.events.add(EventName.commIssue) if not self.logged_comm_issue: invalid = [ s for s, valid in self.sm.valid.items() if not valid ] not_alive = [ s for s, alive in self.sm.alive.items() if not alive ] cloudlog.event("commIssue", invalid=invalid, not_alive=not_alive) self.logged_comm_issue = True else: self.logged_comm_issue = False if not self.sm['lateralPlan'].mpcSolutionValid: self.events.add(EventName.plannerError) if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR: if self.sm.frame > 5 / DT_CTRL: # Give locationd some time to receive all the inputs self.events.add(EventName.sensorDataInvalid) if not self.sm['liveLocationKalman'].posenetOK: self.events.add(EventName.posenetInvalid) if not self.sm['liveLocationKalman'].deviceStable: self.events.add(EventName.deviceFalling) for pandaState in self.sm['pandaStates']: if log.PandaState.FaultType.relayMalfunction in pandaState.faults: self.events.add(EventName.relayMalfunction) planner_fcw = self.sm['longitudinalPlan'].fcw and self.enabled model_fcw = self.sm[ 'modelV2'].meta.hardBrakePredicted and not CS.brakePressed if planner_fcw or model_fcw: self.events.add(EventName.fcw) if TICI: logs = messaging.drain_sock(self.log_sock, wait_for_one=False) messages = [] for m in logs: try: messages.append(m.androidLog.message) except UnicodeDecodeError: pass for err in [ "ERROR_CRC", "ERROR_ECC", "ERROR_STREAM_UNDERFLOW", "APPLY FAILED" ]: for m in messages: if err not in m: continue csid = m.split("CSID:")[-1].split(" ")[0] evt = { "0": EventName.roadCameraError, "1": EventName.wideRoadCameraError, "2": EventName.driverCameraError }.get(csid, None) if evt is not None: self.events.add(evt) # TODO: fix simulator if not SIMULATION: if not NOSENSOR: if not self.sm['liveLocationKalman'].gpsOK and ( self.distance_traveled > 1000): # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes self.events.add(EventName.noGps) if not self.sm.all_alive(self.camera_packets): self.events.add(EventName.cameraMalfunction) if self.sm['modelV2'].frameDropPerc > 20: self.events.add(EventName.modeldLagging) if self.sm['liveLocationKalman'].excessiveResets: self.events.add(EventName.localizerMalfunction) # Check if all manager processes are running not_running = set(p.name for p in self.sm['managerState'].processes if not p.running) if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES): self.events.add(EventName.processNotRunning) # Only allow engagement with brake pressed when stopped behind another stopped car speeds = self.sm['longitudinalPlan'].speeds if len(speeds) > 1: v_future = speeds[-1] else: v_future = 100.0 if CS.brakePressed and v_future >= self.CP.vEgoStarting \ and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3: self.events.add(EventName.noTarget) def data_sample(self): """Receive data from sockets and update carState""" # Update carState from CAN can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True) CS = self.CI.update(self.CC, can_strs) self.sm.update(0) all_valid = CS.canValid and self.sm.all_alive_and_valid() if not self.initialized and (all_valid or self.sm.frame * DT_CTRL > 3.5 or SIMULATION): if not self.read_only: self.CI.init(self.CP, self.can_sock, self.pm.sock['sendcan']) self.initialized = True Params().put_bool("ControlsReady", True) # Check for CAN timeout if not can_strs: self.can_error_counter += 1 self.can_rcv_error = True else: self.can_rcv_error = False # When the panda and controlsd do not agree on controls_allowed # we want to disengage openpilot. However the status from the panda goes through # another socket other than the CAN messages and one can arrive earlier than the other. # Therefore we allow a mismatch for two samples, then we trigger the disengagement. if not self.enabled: self.mismatch_counter = 0 # All pandas not in silent mode must have controlsAllowed when openpilot is enabled for pandaState in self.sm['pandaStates']: if pandaState.safetyModel != SafetyModel.silent and not pandaState.controlsAllowed and self.enabled: self.mismatch_counter += 1 self.distance_traveled += CS.vEgo * DT_CTRL return CS def state_transition(self, CS): """Compute conditional state transitions and execute actions on state transitions""" self.v_cruise_kph_last = self.v_cruise_kph # if stock cruise is completely disabled, then we can use our own set speed logic if not self.CP.pcmCruise: self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.buttonEvents, self.button_timers, self.enabled, self.is_metric) elif self.CP.pcmCruise and CS.cruiseState.enabled: self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH # decrease the soft disable timer at every step, as it's reset on # entrance in SOFT_DISABLING state self.soft_disable_timer = max(0, self.soft_disable_timer - 1) self.current_alert_types = [ET.PERMANENT] # ENABLED, PRE ENABLING, SOFT DISABLING if self.state != State.disabled: # user and immediate disable always have priority in a non-disabled state if self.events.any(ET.USER_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.USER_DISABLE) elif self.events.any(ET.IMMEDIATE_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.IMMEDIATE_DISABLE) else: # ENABLED if self.state == State.enabled: if self.events.any(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = 300 # 3s self.current_alert_types.append(ET.SOFT_DISABLE) # SOFT DISABLING elif self.state == State.softDisabling: if not self.events.any(ET.SOFT_DISABLE): # no more soft disabling condition, so go back to ENABLED self.state = State.enabled elif self.events.any( ET.SOFT_DISABLE) and self.soft_disable_timer > 0: self.current_alert_types.append(ET.SOFT_DISABLE) elif self.soft_disable_timer <= 0: self.state = State.disabled # PRE ENABLING elif self.state == State.preEnabled: if not self.events.any(ET.PRE_ENABLE): self.state = State.enabled else: self.current_alert_types.append(ET.PRE_ENABLE) # DISABLED elif self.state == State.disabled: if self.events.any(ET.ENABLE): if self.events.any(ET.NO_ENTRY): self.current_alert_types.append(ET.NO_ENTRY) else: if self.events.any(ET.PRE_ENABLE): self.state = State.preEnabled else: self.state = State.enabled self.current_alert_types.append(ET.ENABLE) self.v_cruise_kph = initialize_v_cruise( CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last) # Check if actuators are enabled self.active = self.state == State.enabled or self.state == State.softDisabling if self.active: self.current_alert_types.append(ET.WARNING) # Check if openpilot is engaged self.enabled = self.active or self.state == State.preEnabled def state_control(self, CS): """Given the state, this function returns an actuators packet""" # Update VehicleModel params = self.sm['liveParameters'] x = max(params.stiffnessFactor, 0.1) sr = max(params.steerRatio, 0.1) self.VM.update_params(x, sr) lat_plan = self.sm['lateralPlan'] long_plan = self.sm['longitudinalPlan'] actuators = car.CarControl.Actuators.new_message() actuators.longControlState = self.LoC.long_control_state if CS.leftBlinker or CS.rightBlinker: self.last_blinker_frame = self.sm.frame # State specific actions if not self.active: self.LaC.reset() self.LoC.reset(v_pid=CS.vEgo) if not self.joystick_mode: # accel PID loop pid_accel_limits = self.CI.get_pid_accel_limits( self.CP, CS.vEgo, self.v_cruise_kph * CV.KPH_TO_MS) actuators.accel = self.LoC.update(self.active, CS, self.CP, long_plan, pid_accel_limits) # Steering PID loop and lateral MPC desired_curvature, desired_curvature_rate = get_lag_adjusted_curvature( self.CP, CS.vEgo, lat_plan.psis, lat_plan.curvatures, lat_plan.curvatureRates) actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update( self.active, CS, self.CP, self.VM, params, desired_curvature, desired_curvature_rate) else: lac_log = log.ControlsState.LateralDebugState.new_message() if self.sm.rcv_frame['testJoystick'] > 0 and self.active: actuators.accel = 4.0 * clip(self.sm['testJoystick'].axes[0], -1, 1) steer = clip(self.sm['testJoystick'].axes[1], -1, 1) # max angle is 45 for angle-based cars actuators.steer, actuators.steeringAngleDeg = steer, steer * 45. lac_log.active = True lac_log.steeringAngleDeg = CS.steeringAngleDeg lac_log.output = steer lac_log.saturated = abs(steer) >= 0.9 # Check for difference between desired angle and angle for angle based control angle_control_saturated = self.CP.steerControlType == car.CarParams.SteerControlType.angle and \ abs(actuators.steeringAngleDeg - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD if angle_control_saturated and not CS.steeringPressed and self.active: self.saturated_count += 1 else: self.saturated_count = 0 # Send a "steering required alert" if saturation count has reached the limit if (lac_log.saturated and not CS.steeringPressed) or \ (self.saturated_count > STEER_ANGLE_SATURATION_TIMEOUT): if len(lat_plan.dPathPoints): # Check if we deviated from the path left_deviation = actuators.steer > 0 and lat_plan.dPathPoints[ 0] < -0.1 right_deviation = actuators.steer < 0 and lat_plan.dPathPoints[ 0] > 0.1 if left_deviation or right_deviation: self.events.add(EventName.steerSaturated) # Ensure no NaNs/Infs for p in ACTUATOR_FIELDS: attr = getattr(actuators, p) if not isinstance(attr, Number): continue if not math.isfinite(attr): cloudlog.error( f"actuators.{p} not finite {actuators.to_dict()}") setattr(actuators, p, 0.0) return actuators, lac_log def update_button_timers(self, buttonEvents): # increment timer for buttons still pressed for k in self.button_timers.keys(): if self.button_timers[k] > 0: self.button_timers[k] += 1 for b in buttonEvents: if b.type.raw in self.button_timers: self.button_timers[b.type.raw] = 1 if b.pressed else 0 def publish_logs(self, CS, start_time, actuators, lac_log): """Send actuators and hud commands to the car, send controlsstate and MPC logging""" CC = car.CarControl.new_message() CC.enabled = self.enabled CC.active = self.active CC.actuators = actuators CC.cruiseControl.cancel = CS.cruiseState.enabled and ( not self.enabled or not self.CP.pcmCruise) if self.joystick_mode and self.sm.rcv_frame[ 'testJoystick'] > 0 and self.sm['testJoystick'].buttons[0]: CC.cruiseControl.cancel = True CC.hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS) CC.hudControl.speedVisible = self.enabled CC.hudControl.lanesVisible = self.enabled CC.hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead right_lane_visible = self.sm['lateralPlan'].rProb > 0.5 left_lane_visible = self.sm['lateralPlan'].lProb > 0.5 CC.hudControl.rightLaneVisible = bool(right_lane_visible) CC.hudControl.leftLaneVisible = bool(left_lane_visible) recent_blinker = (self.sm.frame - self.last_blinker_frame ) * DT_CTRL < 5.0 # 5s blinker cooldown ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \ and not self.active and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED meta = self.sm['modelV2'].meta if len(meta.desirePrediction) and ldw_allowed: l_lane_change_prob = meta.desirePrediction[Desire.laneChangeLeft - 1] r_lane_change_prob = meta.desirePrediction[Desire.laneChangeRight - 1] l_lane_close = left_lane_visible and ( self.sm['modelV2'].laneLines[1].y[0] > -(1.08 + CAMERA_OFFSET)) r_lane_close = right_lane_visible and ( self.sm['modelV2'].laneLines[2].y[0] < (1.08 - CAMERA_OFFSET)) CC.hudControl.leftLaneDepart = bool( l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) CC.hudControl.rightLaneDepart = bool( r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart: self.events.add(EventName.ldw) clear_event = ET.WARNING if ET.WARNING not in self.current_alert_types else None alerts = self.events.create_alerts(self.current_alert_types, [self.CP, self.sm, self.is_metric]) self.AM.add_many(self.sm.frame, alerts, self.enabled) self.AM.process_alerts(self.sm.frame, clear_event) CC.hudControl.visualAlert = self.AM.visual_alert if not self.read_only and self.initialized: # send car controls over can can_sends = self.CI.apply(CC) self.pm.send( 'sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid)) force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \ (self.state == State.softDisabling) # Curvature & Steering angle params = self.sm['liveParameters'] steer_angle_without_offset = math.radians(CS.steeringAngleDeg - params.angleOffsetAverageDeg) curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo) # controlsState dat = messaging.new_message('controlsState') dat.valid = CS.canValid controlsState = dat.controlsState controlsState.alertText1 = self.AM.alert_text_1 controlsState.alertText2 = self.AM.alert_text_2 controlsState.alertSize = self.AM.alert_size controlsState.alertStatus = self.AM.alert_status controlsState.alertBlinkingRate = self.AM.alert_rate controlsState.alertType = self.AM.alert_type controlsState.alertSound = self.AM.audible_alert controlsState.canMonoTimes = list(CS.canMonoTimes) controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime[ 'longitudinalPlan'] controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan'] controlsState.enabled = self.enabled controlsState.active = self.active controlsState.curvature = curvature controlsState.state = self.state controlsState.engageable = not self.events.any(ET.NO_ENTRY) controlsState.longControlState = self.LoC.long_control_state controlsState.vPid = float(self.LoC.v_pid) controlsState.vCruise = float(self.v_cruise_kph) controlsState.upAccelCmd = float(self.LoC.pid.p) controlsState.uiAccelCmd = float(self.LoC.pid.i) controlsState.ufAccelCmd = float(self.LoC.pid.f) controlsState.cumLagMs = -self.rk.remaining * 1000. controlsState.startMonoTime = int(start_time * 1e9) controlsState.forceDecel = bool(force_decel) controlsState.canErrorCounter = self.can_error_counter if self.joystick_mode: controlsState.lateralControlState.debugState = lac_log elif self.CP.steerControlType == car.CarParams.SteerControlType.angle: controlsState.lateralControlState.angleState = lac_log elif self.CP.lateralTuning.which() == 'pid': controlsState.lateralControlState.pidState = lac_log elif self.CP.lateralTuning.which() == 'lqr': controlsState.lateralControlState.lqrState = lac_log elif self.CP.lateralTuning.which() == 'indi': controlsState.lateralControlState.indiState = lac_log self.pm.send('controlsState', dat) # carState car_events = self.events.to_msg() cs_send = messaging.new_message('carState') cs_send.valid = CS.canValid cs_send.carState = CS cs_send.carState.events = car_events self.pm.send('carState', cs_send) # carEvents - logged every second or on change if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev): ce_send = messaging.new_message('carEvents', len(self.events)) ce_send.carEvents = car_events self.pm.send('carEvents', ce_send) self.events_prev = self.events.names.copy() # carParams - logged every 50 seconds (> 1 per segment) if (self.sm.frame % int(50. / DT_CTRL) == 0): cp_send = messaging.new_message('carParams') cp_send.carParams = self.CP self.pm.send('carParams', cp_send) # carControl cc_send = messaging.new_message('carControl') cc_send.valid = CS.canValid cc_send.carControl = CC self.pm.send('carControl', cc_send) # copy CarControl to pass to CarInterface on the next iteration self.CC = CC def step(self): start_time = sec_since_boot() self.prof.checkpoint("Ratekeeper", ignore=True) # Sample data from sockets and get a carState CS = self.data_sample() self.prof.checkpoint("Sample") self.update_events(CS) if not self.read_only and self.initialized: # Update control state self.state_transition(CS) self.prof.checkpoint("State transition") # Compute actuators (runs PID loops and lateral MPC) actuators, lac_log = self.state_control(CS) self.prof.checkpoint("State Control") # Publish data self.publish_logs(CS, start_time, actuators, lac_log) self.prof.checkpoint("Sent") self.update_button_timers(CS.buttonEvents) def controlsd_thread(self): while True: self.step() self.rk.monitor_time() self.prof.display()
class Controls: def __init__(self, sm=None, pm=None, can_sock=None, CI=None): config_realtime_process(4, Priority.CTRL_HIGH) # Setup sockets self.pm = pm if self.pm is None: self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams']) self.camera_packets = ["roadCameraState", "driverCameraState"] if TICI: self.camera_packets.append("wideRoadCameraState") self.can_sock = can_sock if can_sock is None: can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 20 self.can_sock = messaging.sub_sock('can', timeout=can_timeout) if TICI: self.log_sock = messaging.sub_sock('androidLog') if CI is None: # wait for one pandaState and one CAN packet print("Waiting for CAN messages...") get_one_can(self.can_sock) self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan']) else: self.CI, self.CP = CI, CI.CP params = Params() self.joystick_mode = params.get_bool("JoystickDebugMode") or (self.CP.notCar and sm is None) joystick_packet = ['testJoystick'] if self.joystick_mode else [] self.sm = sm if self.sm is None: ignore = ['driverCameraState', 'managerState'] if SIMULATION else None self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman', 'managerState', 'liveParameters', 'radarState'] + self.camera_packets + joystick_packet, ignore_alive=ignore, ignore_avg_freq=['radarState', 'longitudinalPlan']) # set alternative experiences from parameters self.disengage_on_accelerator = params.get_bool("DisengageOnAccelerator") self.CP.alternativeExperience = 0 if not self.disengage_on_accelerator: self.CP.alternativeExperience |= ALTERNATIVE_EXPERIENCE.DISABLE_DISENGAGE_ON_GAS # read params self.is_metric = params.get_bool("IsMetric") self.is_ldw_enabled = params.get_bool("IsLdwEnabled") openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle") passive = params.get_bool("Passive") or not openpilot_enabled_toggle # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' controller_available = self.CI.CC is not None and not passive and not self.CP.dashcamOnly self.read_only = not car_recognized or not controller_available or self.CP.dashcamOnly if self.read_only: safety_config = car.CarParams.SafetyConfig.new_message() safety_config.safetyModel = car.CarParams.SafetyModel.noOutput self.CP.safetyConfigs = [safety_config] # Write CarParams for radard cp_bytes = self.CP.to_bytes() params.put("CarParams", cp_bytes) put_nonblocking("CarParamsCache", cp_bytes) self.CC = car.CarControl.new_message() self.CS_prev = car.CarState.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP) self.VM = VehicleModel(self.CP) self.LaC: LatControl if self.CP.steerControlType == car.CarParams.SteerControlType.angle: self.LaC = LatControlAngle(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'indi': self.LaC = LatControlINDI(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'torque': self.LaC = LatControlTorque(self.CP, self.CI) self.initialized = False self.state = State.disabled self.enabled = False self.active = False self.can_rcv_error = False self.soft_disable_timer = 0 self.v_cruise_kph = 255 self.v_cruise_kph_last = 0 self.mismatch_counter = 0 self.cruise_mismatch_counter = 0 self.can_rcv_error_counter = 0 self.last_blinker_frame = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.logged_comm_issue = None self.button_timers = {ButtonEvent.Type.decelCruise: 0, ButtonEvent.Type.accelCruise: 0} self.last_actuators = car.CarControl.Actuators.new_message() self.desired_curvature = 0.0 self.desired_curvature_rate = 0.0 # TODO: no longer necessary, aside from process replay self.sm['liveParameters'].valid = True self.startup_event = get_startup_event(car_recognized, controller_available, len(self.CP.carFw) > 0) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) if len(self.CP.carFw) > 0: set_offroad_alert("Offroad_CarUnrecognized", True) else: set_offroad_alert("Offroad_NoFirmware", True) elif self.read_only: self.events.add(EventName.dashcamMode, static=True) elif self.joystick_mode: self.events.add(EventName.joystickDebug, static=True) self.startup_event = None # controlsd is driven by can recv, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) self.prof = Profiler(False) # off by default def update_events(self, CS): """Compute carEvents from carState""" self.events.clear() # Add startup event if self.startup_event is not None: self.events.add(self.startup_event) self.startup_event = None # Don't add any more events if not initialized if not self.initialized: self.events.add(EventName.controlsInitializing) return # Disable on rising edge of accelerator or brake. Also disable on brake when speed > 0 if (CS.gasPressed and not self.CS_prev.gasPressed and self.disengage_on_accelerator) or \ (CS.brakePressed and (not self.CS_prev.brakePressed or not CS.standstill)): self.events.add(EventName.pedalPressed) if CS.gasPressed: self.events.add(EventName.pedalPressedPreEnable if self.disengage_on_accelerator else EventName.gasPressedOverride) if not self.CP.notCar: self.events.add_from_msg(self.sm['driverMonitoringState'].events) # Handle car events. Ignore when CAN is invalid if CS.canTimeout: self.events.add(EventName.canBusMissing) elif not CS.canValid: self.events.add(EventName.canError) else: self.events.add_from_msg(CS.events) # Create events for temperature, disk space, and memory if self.sm['deviceState'].thermalStatus >= ThermalStatus.red: self.events.add(EventName.overheat) if self.sm['deviceState'].freeSpacePercent < 7 and not SIMULATION: # under 7% of space free no enable allowed self.events.add(EventName.outOfSpace) # TODO: make tici threshold the same if self.sm['deviceState'].memoryUsagePercent > 90 and not SIMULATION: self.events.add(EventName.lowMemory) # TODO: enable this once loggerd CPU usage is more reasonable #cpus = list(self.sm['deviceState'].cpuUsagePercent) #if max(cpus, default=0) > 95 and not SIMULATION: # self.events.add(EventName.highCpuUsage) # Alert if fan isn't spinning for 5 seconds if self.sm['peripheralState'].pandaType == PandaType.dos: if self.sm['peripheralState'].fanSpeedRpm == 0 and self.sm['deviceState'].fanSpeedPercentDesired > 50: if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 5.0: self.events.add(EventName.fanMalfunction) else: self.last_functional_fan_frame = self.sm.frame # Handle calibration status cal_status = self.sm['liveCalibration'].calStatus if cal_status != Calibration.CALIBRATED: if cal_status == Calibration.UNCALIBRATED: self.events.add(EventName.calibrationIncomplete) else: self.events.add(EventName.calibrationInvalid) # Handle lane change if self.sm['lateralPlan'].laneChangeState == LaneChangeState.preLaneChange: direction = self.sm['lateralPlan'].laneChangeDirection if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \ (CS.rightBlindspot and direction == LaneChangeDirection.right): self.events.add(EventName.laneChangeBlocked) else: if direction == LaneChangeDirection.left: self.events.add(EventName.preLaneChangeLeft) else: self.events.add(EventName.preLaneChangeRight) elif self.sm['lateralPlan'].laneChangeState in (LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing): self.events.add(EventName.laneChange) for i, pandaState in enumerate(self.sm['pandaStates']): # All pandas must match the list of safetyConfigs, and if outside this list, must be silent or noOutput if i < len(self.CP.safetyConfigs): safety_mismatch = pandaState.safetyModel != self.CP.safetyConfigs[i].safetyModel or \ pandaState.safetyParam != self.CP.safetyConfigs[i].safetyParam or \ pandaState.alternativeExperience != self.CP.alternativeExperience else: safety_mismatch = pandaState.safetyModel not in IGNORED_SAFETY_MODES if safety_mismatch or self.mismatch_counter >= 200: self.events.add(EventName.controlsMismatch) if log.PandaState.FaultType.relayMalfunction in pandaState.faults: self.events.add(EventName.relayMalfunction) # Handle HW and system malfunctions # Order is very intentional here. Be careful when modifying this. # All events here should at least have NO_ENTRY and SOFT_DISABLE. num_events = len(self.events) not_running = {p.name for p in self.sm['managerState'].processes if not p.running and p.shouldBeRunning} if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES): self.events.add(EventName.processNotRunning) else: if not SIMULATION and not self.rk.lagging: if not self.sm.all_alive(self.camera_packets): self.events.add(EventName.cameraMalfunction) elif not self.sm.all_freq_ok(self.camera_packets): self.events.add(EventName.cameraFrameRate) if self.rk.lagging: self.events.add(EventName.controlsdLagging) if len(self.sm['radarState'].radarErrors): self.events.add(EventName.radarFault) if not self.sm.valid['pandaStates']: self.events.add(EventName.usbError) # generic catch-all. ideally, a more specific event should be added above instead no_system_errors = len(self.events) != num_events if (not self.sm.all_checks() or self.can_rcv_error) and no_system_errors and CS.canValid and not CS.canTimeout: if not self.sm.all_alive(): self.events.add(EventName.commIssue) elif not self.sm.all_freq_ok(): self.events.add(EventName.commIssueAvgFreq) else: # invalid or can_rcv_error. self.events.add(EventName.commIssue) logs = { 'invalid': [s for s, valid in self.sm.valid.items() if not valid], 'not_alive': [s for s, alive in self.sm.alive.items() if not alive], 'not_freq_ok': [s for s, freq_ok in self.sm.freq_ok.items() if not freq_ok], 'can_error': self.can_rcv_error, } if logs != self.logged_comm_issue: cloudlog.event("commIssue", error=True, **logs) self.logged_comm_issue = logs else: self.logged_comm_issue = None if not self.sm['liveParameters'].valid: self.events.add(EventName.vehicleModelInvalid) if not self.sm['lateralPlan'].mpcSolutionValid: self.events.add(EventName.plannerError) if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR: if self.sm.frame > 5 / DT_CTRL: # Give locationd some time to receive all the inputs self.events.add(EventName.sensorDataInvalid) if not self.sm['liveLocationKalman'].posenetOK: self.events.add(EventName.posenetInvalid) if not self.sm['liveLocationKalman'].deviceStable: self.events.add(EventName.deviceFalling) if not REPLAY: # Check for mismatch between openpilot and car's PCM cruise_mismatch = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise) self.cruise_mismatch_counter = self.cruise_mismatch_counter + 1 if cruise_mismatch else 0 if self.cruise_mismatch_counter > int(6. / DT_CTRL): self.events.add(EventName.cruiseMismatch) # Check for FCW stock_long_is_braking = self.enabled and not self.CP.openpilotLongitudinalControl and CS.aEgo < -1.25 model_fcw = self.sm['modelV2'].meta.hardBrakePredicted and not CS.brakePressed and not stock_long_is_braking planner_fcw = self.sm['longitudinalPlan'].fcw and self.enabled if planner_fcw or model_fcw: self.events.add(EventName.fcw) if TICI: for m in messaging.drain_sock(self.log_sock, wait_for_one=False): try: msg = m.androidLog.message if any(err in msg for err in ("ERROR_CRC", "ERROR_ECC", "ERROR_STREAM_UNDERFLOW", "APPLY FAILED")): csid = msg.split("CSID:")[-1].split(" ")[0] evt = CSID_MAP.get(csid, None) if evt is not None: self.events.add(evt) except UnicodeDecodeError: pass # TODO: fix simulator if not SIMULATION: if not NOSENSOR: if not self.sm['liveLocationKalman'].gpsOK and (self.distance_traveled > 1000): # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes self.events.add(EventName.noGps) if self.sm['modelV2'].frameDropPerc > 20: self.events.add(EventName.modeldLagging) if self.sm['liveLocationKalman'].excessiveResets: self.events.add(EventName.localizerMalfunction) # Only allow engagement with brake pressed when stopped behind another stopped car speeds = self.sm['longitudinalPlan'].speeds if len(speeds) > 1: v_future = speeds[-1] else: v_future = 100.0 if CS.brakePressed and v_future >= self.CP.vEgoStarting \ and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3: self.events.add(EventName.noTarget) def data_sample(self): """Receive data from sockets and update carState""" # Update carState from CAN can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True) CS = self.CI.update(self.CC, can_strs) self.sm.update(0) if not self.initialized: all_valid = CS.canValid and self.sm.all_checks() if all_valid or self.sm.frame * DT_CTRL > 3.5 or SIMULATION: if not self.read_only: self.CI.init(self.CP, self.can_sock, self.pm.sock['sendcan']) self.initialized = True if REPLAY and self.sm['pandaStates'][0].controlsAllowed: self.state = State.enabled Params().put_bool("ControlsReady", True) # Check for CAN timeout if not can_strs: self.can_rcv_error_counter += 1 self.can_rcv_error = True else: self.can_rcv_error = False # When the panda and controlsd do not agree on controls_allowed # we want to disengage openpilot. However the status from the panda goes through # another socket other than the CAN messages and one can arrive earlier than the other. # Therefore we allow a mismatch for two samples, then we trigger the disengagement. if not self.enabled: self.mismatch_counter = 0 # All pandas not in silent mode must have controlsAllowed when openpilot is enabled if self.enabled and any(not ps.controlsAllowed for ps in self.sm['pandaStates'] if ps.safetyModel not in IGNORED_SAFETY_MODES): self.mismatch_counter += 1 self.distance_traveled += CS.vEgo * DT_CTRL return CS def state_transition(self, CS): """Compute conditional state transitions and execute actions on state transitions""" self.v_cruise_kph_last = self.v_cruise_kph # if stock cruise is completely disabled, then we can use our own set speed logic if not self.CP.pcmCruise: self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.vEgo, CS.gasPressed, CS.buttonEvents, self.button_timers, self.enabled, self.is_metric) else: if CS.cruiseState.available: self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH else: self.v_cruise_kph = 0 # decrement the soft disable timer at every step, as it's reset on # entrance in SOFT_DISABLING state self.soft_disable_timer = max(0, self.soft_disable_timer - 1) self.current_alert_types = [ET.PERMANENT] # ENABLED, SOFT DISABLING, PRE ENABLING, OVERRIDING if self.state != State.disabled: # user and immediate disable always have priority in a non-disabled state if self.events.any(ET.USER_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.USER_DISABLE) elif self.events.any(ET.IMMEDIATE_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.IMMEDIATE_DISABLE) else: # ENABLED if self.state == State.enabled: if self.events.any(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL) self.current_alert_types.append(ET.SOFT_DISABLE) elif self.events.any(ET.OVERRIDE): self.state = State.overriding self.current_alert_types.append(ET.OVERRIDE) # SOFT DISABLING elif self.state == State.softDisabling: if not self.events.any(ET.SOFT_DISABLE): # no more soft disabling condition, so go back to ENABLED self.state = State.enabled elif self.soft_disable_timer > 0: self.current_alert_types.append(ET.SOFT_DISABLE) elif self.soft_disable_timer <= 0: self.state = State.disabled # PRE ENABLING elif self.state == State.preEnabled: if self.events.any(ET.NO_ENTRY): self.state = State.disabled self.current_alert_types.append(ET.NO_ENTRY) elif not self.events.any(ET.PRE_ENABLE): self.state = State.enabled else: self.current_alert_types.append(ET.PRE_ENABLE) # OVERRIDING elif self.state == State.overriding: if self.events.any(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL) self.current_alert_types.append(ET.SOFT_DISABLE) elif not self.events.any(ET.OVERRIDE): self.state = State.enabled else: self.current_alert_types.append(ET.OVERRIDE) # DISABLED elif self.state == State.disabled: if self.events.any(ET.ENABLE): if self.events.any(ET.NO_ENTRY): self.current_alert_types.append(ET.NO_ENTRY) else: if self.events.any(ET.PRE_ENABLE): self.state = State.preEnabled elif self.events.any(ET.OVERRIDE): self.state = State.overriding else: self.state = State.enabled self.current_alert_types.append(ET.ENABLE) if not self.CP.pcmCruise: self.v_cruise_kph = initialize_v_cruise(CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last) # Check if openpilot is engaged and actuators are enabled self.enabled = self.state in ENABLED_STATES self.active = self.state in ACTIVE_STATES if self.active: self.current_alert_types.append(ET.WARNING) def state_control(self, CS): """Given the state, this function returns a CarControl packet""" # Update VehicleModel params = self.sm['liveParameters'] x = max(params.stiffnessFactor, 0.1) sr = max(params.steerRatio, 0.1) self.VM.update_params(x, sr) lat_plan = self.sm['lateralPlan'] long_plan = self.sm['longitudinalPlan'] CC = car.CarControl.new_message() CC.enabled = self.enabled # Check which actuators can be enabled CC.latActive = self.active and not CS.steerFaultTemporary and not CS.steerFaultPermanent and \ CS.vEgo > self.CP.minSteerSpeed and not CS.standstill CC.longActive = self.active and not self.events.any(ET.OVERRIDE) and self.CP.openpilotLongitudinalControl actuators = CC.actuators actuators.longControlState = self.LoC.long_control_state if CS.leftBlinker or CS.rightBlinker: self.last_blinker_frame = self.sm.frame # State specific actions if not CC.latActive: self.LaC.reset() if not CC.longActive: self.LoC.reset(v_pid=CS.vEgo) if not self.joystick_mode: # accel PID loop pid_accel_limits = self.CI.get_pid_accel_limits(self.CP, CS.vEgo, self.v_cruise_kph * CV.KPH_TO_MS) t_since_plan = (self.sm.frame - self.sm.rcv_frame['longitudinalPlan']) * DT_CTRL actuators.accel = self.LoC.update(CC.longActive, CS, long_plan, pid_accel_limits, t_since_plan) # Steering PID loop and lateral MPC self.desired_curvature, self.desired_curvature_rate = get_lag_adjusted_curvature(self.CP, CS.vEgo, lat_plan.psis, lat_plan.curvatures, lat_plan.curvatureRates) actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.VM, params, self.last_actuators, self.desired_curvature, self.desired_curvature_rate, self.sm['liveLocationKalman']) else: lac_log = log.ControlsState.LateralDebugState.new_message() if self.sm.rcv_frame['testJoystick'] > 0: if CC.longActive: actuators.accel = 4.0*clip(self.sm['testJoystick'].axes[0], -1, 1) if CC.latActive: steer = clip(self.sm['testJoystick'].axes[1], -1, 1) # max angle is 45 for angle-based cars actuators.steer, actuators.steeringAngleDeg = steer, steer * 45. lac_log.active = self.active lac_log.steeringAngleDeg = CS.steeringAngleDeg lac_log.output = actuators.steer lac_log.saturated = abs(actuators.steer) >= 0.9 # Send a "steering required alert" if saturation count has reached the limit if lac_log.active and lac_log.saturated and not CS.steeringPressed: dpath_points = lat_plan.dPathPoints if len(dpath_points): # Check if we deviated from the path # TODO use desired vs actual curvature left_deviation = actuators.steer > 0 and dpath_points[0] < -0.20 right_deviation = actuators.steer < 0 and dpath_points[0] > 0.20 if left_deviation or right_deviation: self.events.add(EventName.steerSaturated) # Ensure no NaNs/Infs for p in ACTUATOR_FIELDS: attr = getattr(actuators, p) if not isinstance(attr, SupportsFloat): continue if not math.isfinite(attr): cloudlog.error(f"actuators.{p} not finite {actuators.to_dict()}") setattr(actuators, p, 0.0) return CC, lac_log def update_button_timers(self, buttonEvents): # increment timer for buttons still pressed for k in self.button_timers: if self.button_timers[k] > 0: self.button_timers[k] += 1 for b in buttonEvents: if b.type.raw in self.button_timers: self.button_timers[b.type.raw] = 1 if b.pressed else 0 def publish_logs(self, CS, start_time, CC, lac_log): """Send actuators and hud commands to the car, send controlsstate and MPC logging""" # Orientation and angle rates can be useful for carcontroller # Only calibrated (car) frame is relevant for the carcontroller orientation_value = list(self.sm['liveLocationKalman'].calibratedOrientationNED.value) if len(orientation_value) > 2: CC.orientationNED = orientation_value angular_rate_value = list(self.sm['liveLocationKalman'].angularVelocityCalibrated.value) if len(angular_rate_value) > 2: CC.angularVelocity = angular_rate_value CC.cruiseControl.cancel = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise) if self.joystick_mode and self.sm.rcv_frame['testJoystick'] > 0 and self.sm['testJoystick'].buttons[0]: CC.cruiseControl.cancel = True hudControl = CC.hudControl hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS) hudControl.speedVisible = self.enabled hudControl.lanesVisible = self.enabled hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead hudControl.rightLaneVisible = True hudControl.leftLaneVisible = True recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \ and not CC.latActive and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED model_v2 = self.sm['modelV2'] desire_prediction = model_v2.meta.desirePrediction if len(desire_prediction) and ldw_allowed: right_lane_visible = self.sm['lateralPlan'].rProb > 0.5 left_lane_visible = self.sm['lateralPlan'].lProb > 0.5 l_lane_change_prob = desire_prediction[Desire.laneChangeLeft - 1] r_lane_change_prob = desire_prediction[Desire.laneChangeRight - 1] lane_lines = model_v2.laneLines l_lane_close = left_lane_visible and (lane_lines[1].y[0] > -(1.08 + CAMERA_OFFSET)) r_lane_close = right_lane_visible and (lane_lines[2].y[0] < (1.08 - CAMERA_OFFSET)) hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) if hudControl.rightLaneDepart or hudControl.leftLaneDepart: self.events.add(EventName.ldw) clear_event_types = set() if ET.WARNING not in self.current_alert_types: clear_event_types.add(ET.WARNING) if self.enabled: clear_event_types.add(ET.NO_ENTRY) alerts = self.events.create_alerts(self.current_alert_types, [self.CP, CS, self.sm, self.is_metric, self.soft_disable_timer]) self.AM.add_many(self.sm.frame, alerts) current_alert = self.AM.process_alerts(self.sm.frame, clear_event_types) if current_alert: hudControl.visualAlert = current_alert.visual_alert if not self.read_only and self.initialized: # send car controls over can self.last_actuators, can_sends = self.CI.apply(CC) self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid)) CC.actuatorsOutput = self.last_actuators force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \ (self.state == State.softDisabling) # Curvature & Steering angle params = self.sm['liveParameters'] steer_angle_without_offset = math.radians(CS.steeringAngleDeg - params.angleOffsetDeg) curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo, params.roll) # controlsState dat = messaging.new_message('controlsState') dat.valid = CS.canValid controlsState = dat.controlsState if current_alert: controlsState.alertText1 = current_alert.alert_text_1 controlsState.alertText2 = current_alert.alert_text_2 controlsState.alertSize = current_alert.alert_size controlsState.alertStatus = current_alert.alert_status controlsState.alertBlinkingRate = current_alert.alert_rate controlsState.alertType = current_alert.alert_type controlsState.alertSound = current_alert.audible_alert controlsState.canMonoTimes = list(CS.canMonoTimes) controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan'] controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan'] controlsState.enabled = self.enabled controlsState.active = self.active controlsState.curvature = curvature controlsState.desiredCurvature = self.desired_curvature controlsState.desiredCurvatureRate = self.desired_curvature_rate controlsState.state = self.state controlsState.engageable = not self.events.any(ET.NO_ENTRY) controlsState.longControlState = self.LoC.long_control_state controlsState.vPid = float(self.LoC.v_pid) controlsState.vCruise = float(self.v_cruise_kph) controlsState.upAccelCmd = float(self.LoC.pid.p) controlsState.uiAccelCmd = float(self.LoC.pid.i) controlsState.ufAccelCmd = float(self.LoC.pid.f) controlsState.cumLagMs = -self.rk.remaining * 1000. controlsState.startMonoTime = int(start_time * 1e9) controlsState.forceDecel = bool(force_decel) controlsState.canErrorCounter = self.can_rcv_error_counter lat_tuning = self.CP.lateralTuning.which() if self.joystick_mode: controlsState.lateralControlState.debugState = lac_log elif self.CP.steerControlType == car.CarParams.SteerControlType.angle: controlsState.lateralControlState.angleState = lac_log elif lat_tuning == 'pid': controlsState.lateralControlState.pidState = lac_log elif lat_tuning == 'torque': controlsState.lateralControlState.torqueState = lac_log elif lat_tuning == 'indi': controlsState.lateralControlState.indiState = lac_log self.pm.send('controlsState', dat) # carState car_events = self.events.to_msg() cs_send = messaging.new_message('carState') cs_send.valid = CS.canValid cs_send.carState = CS cs_send.carState.events = car_events self.pm.send('carState', cs_send) # carEvents - logged every second or on change if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev): ce_send = messaging.new_message('carEvents', len(self.events)) ce_send.carEvents = car_events self.pm.send('carEvents', ce_send) self.events_prev = self.events.names.copy() # carParams - logged every 50 seconds (> 1 per segment) if (self.sm.frame % int(50. / DT_CTRL) == 0): cp_send = messaging.new_message('carParams') cp_send.carParams = self.CP self.pm.send('carParams', cp_send) # carControl cc_send = messaging.new_message('carControl') cc_send.valid = CS.canValid cc_send.carControl = CC self.pm.send('carControl', cc_send) # copy CarControl to pass to CarInterface on the next iteration self.CC = CC def step(self): start_time = sec_since_boot() self.prof.checkpoint("Ratekeeper", ignore=True) # Sample data from sockets and get a carState CS = self.data_sample() cloudlog.timestamp("Data sampled") self.prof.checkpoint("Sample") self.update_events(CS) cloudlog.timestamp("Events updated") if not self.read_only and self.initialized: # Update control state self.state_transition(CS) self.prof.checkpoint("State transition") # Compute actuators (runs PID loops and lateral MPC) CC, lac_log = self.state_control(CS) self.prof.checkpoint("State Control") # Publish data self.publish_logs(CS, start_time, CC, lac_log) self.prof.checkpoint("Sent") self.update_button_timers(CS.buttonEvents) self.CS_prev = CS def controlsd_thread(self): while True: self.step() self.rk.monitor_time() self.prof.display()
class Controls: def __init__(self, sm=None, pm=None, can_sock=None): config_realtime_process(4 if TICI else 3, Priority.CTRL_HIGH) # Setup sockets self.pm = pm if self.pm is None: self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams']) self.sm = sm if self.sm is None: ignore = ['driverCameraState', 'managerState'] if SIMULATION else None self.sm = messaging.SubMaster(['deviceState', 'pandaState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman', 'roadCameraState', 'driverCameraState', 'managerState', 'liveParameters', 'radarState'], ignore_alive=ignore, ignore_avg_freq=['radarState', 'longitudinalPlan']) self.can_sock = can_sock if can_sock is None: can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100 self.can_sock = messaging.sub_sock('can', timeout=can_timeout) # wait for one pandaState and one CAN packet print("Waiting for CAN messages...") get_one_can(self.can_sock) self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan']) # read params params = Params() self.is_metric = params.get_bool("IsMetric") self.is_ldw_enabled = params.get_bool("IsLdwEnabled") self.enable_lte_onroad = params.get_bool("EnableLteOnroad") community_feature_toggle = params.get_bool("CommunityFeaturesToggle") openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle") passive = params.get_bool("Passive") or not openpilot_enabled_toggle self.commIssue_ignored = params.get_bool("ComIssueGone") self.auto_enabled = params.get_bool("AutoEnable") and params.get_bool("MadModeEnabled") # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' fuzzy_fingerprint = self.CP.fuzzyFingerprint # If stock camera is disconnected, we loaded car controls and it's not dashcam mode controller_available = self.CP.enableCamera and self.CI.CC is not None and not passive and not self.CP.dashcamOnly community_feature = self.CP.communityFeature or fuzzy_fingerprint community_feature_disallowed = community_feature and (not community_feature_toggle) self.read_only = not car_recognized or not controller_available or \ self.CP.dashcamOnly or community_feature_disallowed if self.read_only: self.CP.safetyModel = car.CarParams.SafetyModel.noOutput # Write CarParams for radard cp_bytes = self.CP.to_bytes() params.put("CarParams", cp_bytes) put_nonblocking("CarParamsCache", cp_bytes) self.CC = car.CarControl.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP, self.CI.compute_gb) self.VM = VehicleModel(self.CP) self.lateral_control_method = 0 if self.CP.steerControlType == car.CarParams.SteerControlType.angle: self.LaC = LatControlAngle(self.CP) self.lateral_control_method = 3 elif self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP) self.lateral_control_method = 0 elif self.CP.lateralTuning.which() == 'indi': self.LaC = LatControlINDI(self.CP) self.lateral_control_method = 1 elif self.CP.lateralTuning.which() == 'lqr': self.LaC = LatControlLQR(self.CP) self.lateral_control_method = 2 self.long_plan_source = 0 self.controlsAllowed = False self.initialized = False self.state = State.disabled self.enabled = False self.active = False self.can_rcv_error = False self.soft_disable_timer = 0 self.v_cruise_kph = 255 self.v_cruise_kph_last = 0 self.mismatch_counter = 0 self.can_error_counter = 0 self.last_blinker_frame = 0 self.saturated_count = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.logged_comm_issue = False # TODO: no longer necessary, aside from process replay self.sm['liveParameters'].valid = True self.startup_event = get_startup_event(car_recognized, controller_available, fuzzy_fingerprint) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if community_feature_disallowed: self.events.add(EventName.communityFeatureDisallowed, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) #elif self.read_only: # self.events.add(EventName.dashcamMode, static=True) # controlsd is driven by can recv, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) self.prof = Profiler(False) # off by default self.hyundai_lkas = self.read_only #read_only self.mpc_frame = 0 self.steerRatio_Max = float(int(Params().get("SteerRatioMaxAdj")) * 0.1) self.angle_differ_range = [0, 15] self.steerRatio_range = [self.CP.steerRatio, self.steerRatio_Max] self.new_steerRatio = self.CP.steerRatio self.new_steerRatio_prev = self.CP.steerRatio self.steerRatio_to_send = 0 self.model_long_alert_prev = True self.delayed_comm_issue_timer = 0 def auto_enable(self, CS): if self.state != State.enabled and CS.vEgo >= 3 * CV.KPH_TO_MS and CS.gearShifter == 2 and self.sm['liveCalibration'].calStatus != Calibration.UNCALIBRATED: if self.sm.all_alive_and_valid() and self.enabled != self.controlsAllowed: self.events.add( EventName.pcmEnable ) def update_events(self, CS): """Compute carEvents from carState""" self.events.clear() self.events.add_from_msg(CS.events) self.events.add_from_msg(self.sm['driverMonitoringState'].events) # Handle startup event if self.startup_event is not None: self.events.add(self.startup_event) self.startup_event = None # Don't add any more events if not initialized if not self.initialized: self.events.add(EventName.controlsInitializing) return # Create events for battery, temperature, disk space, and memory if self.sm['deviceState'].batteryPercent < 1 and self.sm['deviceState'].chargingError: # at zero percent battery, while discharging, OP should not allowed self.events.add(EventName.lowBattery) if self.sm['deviceState'].thermalStatus >= ThermalStatus.red: self.events.add(EventName.overheat) if self.sm['deviceState'].freeSpacePercent < 7: # under 7% of space free no enable allowed self.events.add(EventName.outOfSpace) if self.sm['deviceState'].memoryUsagePercent > 90: self.events.add(EventName.lowMemory) # Alert if fan isn't spinning for 5 seconds if self.sm['pandaState'].pandaType in [PandaType.uno, PandaType.dos]: if self.sm['pandaState'].fanSpeedRpm == 0 and self.sm['deviceState'].fanSpeedPercentDesired > 50: if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 5.0: self.events.add(EventName.fanMalfunction) else: self.last_functional_fan_frame = self.sm.frame # Handle calibration status cal_status = self.sm['liveCalibration'].calStatus if cal_status != Calibration.CALIBRATED: if cal_status == Calibration.UNCALIBRATED: self.events.add(EventName.calibrationIncomplete) else: self.events.add(EventName.calibrationInvalid) # Handle lane change if self.sm['lateralPlan'].laneChangeState == LaneChangeState.preLaneChange: direction = self.sm['lateralPlan'].laneChangeDirection if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \ (CS.rightBlindspot and direction == LaneChangeDirection.right): self.events.add(EventName.laneChangeBlocked) else: if direction == LaneChangeDirection.left: self.events.add(EventName.preLaneChangeLeft) else: self.events.add(EventName.preLaneChangeRight) elif self.sm['lateralPlan'].laneChangeState in [LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing]: self.events.add(EventName.laneChange) if self.can_rcv_error or not CS.canValid: self.events.add(EventName.canError) safety_mismatch = self.sm['pandaState'].safetyModel != self.CP.safetyModel or self.sm['pandaState'].safetyParam != self.CP.safetyParam if safety_mismatch or self.mismatch_counter >= 200: self.events.add(EventName.controlsMismatch) if not self.sm['liveParameters'].valid: self.events.add(EventName.vehicleModelInvalid) if len(self.sm['radarState'].radarErrors): self.events.add(EventName.radarFault) elif not self.sm.all_alive_and_valid() and self.sm['pandaState'].pandaType != PandaType.whitePanda and not self.commIssue_ignored: self.delayed_comm_issue_timer += 1 if self.delayed_comm_issue_timer > 100: self.events.add(EventName.commIssue) if not self.logged_comm_issue: cloudlog.error(f"commIssue - valid: {self.sm.valid} - alive: {self.sm.alive}") self.logged_comm_issue = True else: self.logged_comm_issue = False self.delayed_comm_issue_timer = 0 if not self.sm['lateralPlan'].mpcSolutionValid and not (EventName.laneChangeManual in self.events.names) and CS.steeringAngleDeg < 15: self.events.add(EventName.plannerError) if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR: if self.sm.frame > 5 / DT_CTRL: # Give locationd some time to receive all the inputs self.events.add(EventName.sensorDataInvalid) if not self.sm['liveLocationKalman'].posenetOK: self.events.add(EventName.posenetInvalid) if not self.sm['liveLocationKalman'].deviceStable: self.events.add(EventName.deviceFalling) if log.PandaState.FaultType.relayMalfunction in self.sm['pandaState'].faults: self.events.add(EventName.relayMalfunction) if self.sm['longitudinalPlan'].fcw: self.events.add(EventName.fcw) # TODO: fix simulator if not SIMULATION: #if not NOSENSOR: # if not self.sm['liveLocationKalman'].gpsOK and (self.distance_traveled > 1000) and \ # (not TICI or self.enable_lte_onroad): # # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes # self.events.add(EventName.noGps) if not self.sm.all_alive(['roadCameraState', 'driverCameraState']): self.events.add(EventName.cameraMalfunction) if self.sm['modelV2'].frameDropPerc > 20: self.events.add(EventName.modeldLagging) # Check if all manager processes are running not_running = set(p.name for p in self.sm['managerState'].processes if not p.running) if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES): self.events.add(EventName.processNotRunning) # Only allow engagement with brake pressed when stopped behind another stopped car #if CS.brakePressed and self.sm['longitudinalPlan'].vTargetFuture >= STARTING_TARGET_SPEED \ # and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3: # self.events.add(EventName.noTarget) # ModelLongAlert if Params().get_bool("ModelLongEnabled") and self.model_long_alert_prev: self.events.add(EventName.modelLongAlert) self.model_long_alert_prev = not self.model_long_alert_prev elif not Params().get_bool("ModelLongEnabled"): self.model_long_alert_prev = True # atom if self.auto_enabled: self.auto_enable( CS ) def data_sample(self): """Receive data from sockets and update carState""" # Update carState from CAN can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True) CS = self.CI.update(self.CC, can_strs) self.sm.update(0) all_valid = CS.canValid and self.sm.all_alive_and_valid() if not self.initialized and (all_valid or self.sm.frame * DT_CTRL > 2.0): self.initialized = True Params().put_bool("ControlsReady", True) # Check for CAN timeout if not can_strs: self.can_error_counter += 1 self.can_rcv_error = True else: self.can_rcv_error = False # When the panda and controlsd do not agree on controls_allowed # we want to disengage openpilot. However the status from the panda goes through # another socket other than the CAN messages and one can arrive earlier than the other. # Therefore we allow a mismatch for two samples, then we trigger the disengagement. self.controlsAllowed = self.sm['pandaState'].controlsAllowed if not self.enabled: self.mismatch_counter = 0 elif not self.controlsAllowed and self.enabled: self.mismatch_counter += 1 self.distance_traveled += CS.vEgo * DT_CTRL return CS def state_transition(self, CS): """Compute conditional state transitions and execute actions on state transitions""" # if stock cruise is completely disabled, then we can use our own set speed logic # self.CP.enableCruise is true self.CP.enableCruise = self.CI.CP.enableCruise if not self.CP.enableCruise: self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.buttonEvents, self.enabled) if int(CS.vSetDis)-1 > self.v_cruise_kph: self.v_cruise_kph = int(CS.vSetDis) elif self.CP.enableCruise and CS.cruiseState.enabled: if Params().get_bool('OpkrVariableCruise') and CS.cruiseState.modeSel != 0 and self.CP.vCruisekph > 30: self.v_cruise_kph = self.CP.vCruisekph self.v_cruise_kph_last = self.v_cruise_kph elif CS.cruiseButtons == Buttons.RES_ACCEL and Params().get_bool('OpkrVariableCruise') and CS.cruiseState.modeSel != 0 and CS.vSetDis < (self.v_cruise_kph_last - 1): self.v_cruise_kph = self.v_cruise_kph_last if int(CS.vSetDis)-1 > self.v_cruise_kph: self.v_cruise_kph = int(CS.vSetDis) elif CS.cruiseButtons == Buttons.RES_ACCEL and Params().get_bool('OpkrVariableCruise') and CS.cruiseState.modeSel != 0 and 30 <= self.v_cruise_kph_last <= round(CS.vEgo*CV.MS_TO_KPH): self.v_cruise_kph = round(CS.vEgo*CV.MS_TO_KPH) if int(CS.vSetDis)-1 > self.v_cruise_kph: self.v_cruise_kph = int(CS.vSetDis) self.v_cruise_kph_last = self.v_cruise_kph elif CS.cruiseButtons == Buttons.RES_ACCEL or CS.cruiseButtons == Buttons.SET_DECEL: self.v_cruise_kph = round(CS.cruiseState.speed * CV.MS_TO_KPH) self.v_cruise_kph_last = self.v_cruise_kph elif CS.driverAcc and Params().get_bool('OpkrVariableCruise') and Params().get_bool('CruiseOverMaxSpeed') and 30 <= self.v_cruise_kph < int(round(CS.vEgo*CV.MS_TO_KPH)): self.v_cruise_kph = int(round(CS.vEgo*CV.MS_TO_KPH)) self.v_cruise_kph_last = self.v_cruise_kph # decrease the soft disable timer at every step, as it's reset on # entrance in SOFT_DISABLING state self.soft_disable_timer = max(0, self.soft_disable_timer - 1) self.current_alert_types = [ET.PERMANENT] # ENABLED, PRE ENABLING, SOFT DISABLING if self.state != State.disabled: # user and immediate disable always have priority in a non-disabled state if self.events.any(ET.USER_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.USER_DISABLE) elif self.events.any(ET.IMMEDIATE_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.IMMEDIATE_DISABLE) else: # ENABLED if self.state == State.enabled: if self.events.any(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = 300 # 3s self.current_alert_types.append(ET.SOFT_DISABLE) # SOFT DISABLING elif self.state == State.softDisabling: if not self.events.any(ET.SOFT_DISABLE): # no more soft disabling condition, so go back to ENABLED self.state = State.enabled elif self.events.any(ET.SOFT_DISABLE) and self.soft_disable_timer > 0: self.current_alert_types.append(ET.SOFT_DISABLE) elif self.soft_disable_timer <= 0: self.state = State.disabled # PRE ENABLING elif self.state == State.preEnabled: if not self.events.any(ET.PRE_ENABLE): self.state = State.enabled else: self.current_alert_types.append(ET.PRE_ENABLE) # DISABLED elif self.state == State.disabled: if self.events.any(ET.ENABLE): if self.events.any(ET.NO_ENTRY): self.current_alert_types.append(ET.NO_ENTRY) else: if self.events.any(ET.PRE_ENABLE): self.state = State.preEnabled else: self.state = State.enabled self.current_alert_types.append(ET.ENABLE) #self.v_cruise_kph = initialize_v_cruise(CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last) self.v_cruise_kph = 0 self.v_cruise_kph_last = 0 # Check if actuators are enabled self.active = self.state == State.enabled or self.state == State.softDisabling if self.active: self.current_alert_types.append(ET.WARNING) # Check if openpilot is engaged self.enabled = self.active or self.state == State.preEnabled def state_control(self, CS): """Given the state, this function returns an actuators packet""" lat_plan = self.sm['lateralPlan'] long_plan = self.sm['longitudinalPlan'] anglesteer_current = CS.steeringAngleDeg anglesteer_desire = lat_plan.steerAngleDesireDeg output_scale = lat_plan.outputScale live_sr = Params().get_bool('OpkrLiveSteerRatio') if not live_sr: angle_diff = abs(anglesteer_desire) - abs(anglesteer_current) if abs(output_scale) >= self.CP.steerMaxV[0] and CS.vEgo > 8: self.new_steerRatio_prev = interp(angle_diff, self.angle_differ_range, self.steerRatio_range) if self.new_steerRatio_prev > self.new_steerRatio: self.new_steerRatio = self.new_steerRatio_prev else: self.mpc_frame += 1 if self.mpc_frame % 100 == 0: self.new_steerRatio -= 0.1 if self.new_steerRatio <= self.CP.steerRatio: self.new_steerRatio = self.CP.steerRatio self.mpc_frame = 0 # Update VehicleModel params = self.sm['liveParameters'] x = max(params.stiffnessFactor, 0.1) if live_sr: sr = max(params.steerRatio, 0.1) else: sr = max(self.new_steerRatio, 0.1) self.VM.update_params(x, sr) self.steerRatio_to_send = sr actuators = car.CarControl.Actuators.new_message() if CS.leftBlinker or CS.rightBlinker: self.last_blinker_frame = self.sm.frame # State specific actions if not self.active: self.LaC.reset() self.LoC.reset(v_pid=CS.vEgo) long_plan_age = DT_CTRL * (self.sm.frame - self.sm.rcv_frame['longitudinalPlan']) # no greater than dt mpc + dt, to prevent too high extraps dt = min(long_plan_age, LON_MPC_STEP + DT_CTRL) + DT_CTRL a_acc_sol = long_plan.aStart + (dt / LON_MPC_STEP) * (long_plan.aTarget - long_plan.aStart) v_acc_sol = long_plan.vStart + dt * (a_acc_sol + long_plan.aStart) / 2.0 extras_loc = {'lead_one': self.sm['radarState'].leadOne, 'has_lead': long_plan.hasLead} # Gas/Brake PID loop actuators.gas, actuators.brake = self.LoC.update(self.active and CS.cruiseState.speed > 1., CS, v_acc_sol, long_plan.vTargetFuture, long_plan.aTarget, a_acc_sol, self.CP, long_plan.hasLead, self.sm['radarState'], long_plan.longitudinalPlanSource, extras_loc) # Steering PID loop and lateral MPC actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(self.active, CS, self.CP, self.VM, params, lat_plan) # Check for difference between desired angle and angle for angle based control angle_control_saturated = self.CP.steerControlType == car.CarParams.SteerControlType.angle and \ abs(actuators.steeringAngleDeg - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD if angle_control_saturated and not CS.steeringPressed and self.active: self.saturated_count += 1 else: self.saturated_count = 0 # Send a "steering required alert" if saturation count has reached the limit if (lac_log.saturated and not CS.steeringPressed) or \ (self.saturated_count > STEER_ANGLE_SATURATION_TIMEOUT): if len(lat_plan.dPathPoints): # Check if we deviated from the path left_deviation = actuators.steer > 0 and lat_plan.dPathPoints[0] < -0.1 right_deviation = actuators.steer < 0 and lat_plan.dPathPoints[0] > 0.1 if left_deviation or right_deviation: self.events.add(EventName.steerSaturated) return actuators, v_acc_sol, a_acc_sol, lac_log def publish_logs(self, CS, start_time, actuators, v_acc, a_acc, lac_log): """Send actuators and hud commands to the car, send controlsstate and MPC logging""" self.log_alertTextMsg1 = trace1.global_alertTextMsg1 self.log_alertTextMsg2 = trace1.global_alertTextMsg2 CC = car.CarControl.new_message() CC.enabled = self.enabled CC.actuators = actuators CC.cruiseControl.override = True CC.cruiseControl.cancel = self.CP.enableCruise and not self.enabled and CS.cruiseState.enabled # Some override values for Honda # brake discount removes a sharp nonlinearity brake_discount = (1.0 - clip(actuators.brake * 3., 0.0, 1.0)) speed_override = max(0.0, (self.LoC.v_pid + CS.cruiseState.speedOffset) * brake_discount) CC.cruiseControl.speedOverride = float(speed_override if self.CP.enableCruise else 0.0) CC.cruiseControl.accelOverride = self.CI.calc_accel_override(CS.aEgo, self.sm['longitudinalPlan'].aTarget, CS.vEgo, self.sm['longitudinalPlan'].vTarget) CC.hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS) CC.hudControl.speedVisible = self.enabled CC.hudControl.lanesVisible = self.enabled CC.hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead CC.hudControl.leadDistance = self.sm['radarState'].leadOne.dRel CC.hudControl.leadvRel = self.sm['radarState'].leadOne.vRel CC.hudControl.leadyRel = self.sm['radarState'].leadOne.yRel right_lane_visible = self.sm['lateralPlan'].rProb > 0.5 left_lane_visible = self.sm['lateralPlan'].lProb > 0.5 CC.hudControl.rightLaneVisible = bool(right_lane_visible) CC.hudControl.leftLaneVisible = bool(left_lane_visible) recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \ and not self.active and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED meta = self.sm['modelV2'].meta if len(meta.desirePrediction) and ldw_allowed: l_lane_change_prob = meta.desirePrediction[Desire.laneChangeLeft - 1] r_lane_change_prob = meta.desirePrediction[Desire.laneChangeRight - 1] if CS.cruiseState.modeSel == 3: l_lane_close = left_lane_visible and (self.sm['modelV2'].laneLines[1].y[0] > -(1.08 + CAMERA_OFFSET_A)) r_lane_close = right_lane_visible and (self.sm['modelV2'].laneLines[2].y[0] < (1.08 - CAMERA_OFFSET_A)) else: l_lane_close = left_lane_visible and (self.sm['modelV2'].laneLines[1].y[0] > -(1.08 + CAMERA_OFFSET)) r_lane_close = right_lane_visible and (self.sm['modelV2'].laneLines[2].y[0] < (1.08 - CAMERA_OFFSET)) CC.hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) CC.hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart: self.events.add(EventName.ldw) clear_event = ET.WARNING if ET.WARNING not in self.current_alert_types else None alerts = self.events.create_alerts(self.current_alert_types, [self.CP, self.sm, self.is_metric]) self.AM.add_many(self.sm.frame, alerts, self.enabled) self.AM.process_alerts(self.sm.frame, clear_event) CC.hudControl.visualAlert = self.AM.visual_alert if not self.hyundai_lkas and self.enabled: # send car controls over can can_sends = self.CI.apply(CC, self.sm) self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid)) force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \ (self.state == State.softDisabling) # Curvature & Steering angle params = self.sm['liveParameters'] lat_plan = self.sm['lateralPlan'] steer_angle_without_offset = math.radians(CS.steeringAngleDeg - params.angleOffsetAverageDeg) curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo) angle_steers_des = math.degrees(self.VM.get_steer_from_curvature(-lat_plan.curvature, CS.vEgo)) angle_steers_des += params.angleOffsetDeg # controlsState dat = messaging.new_message('controlsState') dat.valid = CS.canValid controlsState = dat.controlsState controlsState.alertText1 = self.AM.alert_text_1 controlsState.alertText2 = self.AM.alert_text_2 controlsState.alertSize = self.AM.alert_size controlsState.alertStatus = self.AM.alert_status controlsState.alertBlinkingRate = self.AM.alert_rate controlsState.alertType = self.AM.alert_type controlsState.alertSound = self.AM.audible_alert controlsState.canMonoTimes = list(CS.canMonoTimes) controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan'] controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan'] controlsState.enabled = self.enabled controlsState.active = self.active controlsState.curvature = curvature controlsState.steeringAngleDesiredDeg = angle_steers_des controlsState.state = self.state controlsState.engageable = not self.events.any(ET.NO_ENTRY) controlsState.longControlState = self.LoC.long_control_state controlsState.vPid = float(self.LoC.v_pid) controlsState.vCruise = float(self.v_cruise_kph) controlsState.upAccelCmd = float(self.LoC.pid.p) controlsState.uiAccelCmd = float(self.LoC.pid.id) controlsState.ufAccelCmd = float(self.LoC.pid.f) controlsState.vTargetLead = float(v_acc) controlsState.aTarget = float(a_acc) controlsState.cumLagMs = -self.rk.remaining * 1000. controlsState.startMonoTime = int(start_time * 1e9) controlsState.forceDecel = bool(force_decel) controlsState.canErrorCounter = self.can_error_counter controlsState.alertTextMsg1 = self.log_alertTextMsg1 controlsState.alertTextMsg2 = self.log_alertTextMsg2 controlsState.limitSpeedCamera = float(self.sm['longitudinalPlan'].targetSpeedCamera) controlsState.limitSpeedCameraDist = float(self.sm['longitudinalPlan'].targetSpeedCameraDist) controlsState.lateralControlMethod = int(self.lateral_control_method) controlsState.steerRatio = float(self.steerRatio_to_send) if self.sm['longitudinalPlan'].longitudinalPlanSource == LongitudinalPlanSource.cruise: self.long_plan_source = 1 elif self.sm['longitudinalPlan'].longitudinalPlanSource == LongitudinalPlanSource.mpc1: self.long_plan_source = 2 elif self.sm['longitudinalPlan'].longitudinalPlanSource == LongitudinalPlanSource.mpc2: self.long_plan_source = 3 elif self.sm['longitudinalPlan'].longitudinalPlanSource == LongitudinalPlanSource.mpc3: self.long_plan_source = 4 elif self.sm['longitudinalPlan'].longitudinalPlanSource == LongitudinalPlanSource.model: self.long_plan_source = 5 else: self.long_plan_source = 0 controlsState.longPlanSource = self.long_plan_source if self.CP.steerControlType == car.CarParams.SteerControlType.angle: controlsState.lateralControlState.angleState = lac_log elif self.CP.lateralTuning.which() == 'pid': controlsState.lateralControlState.pidState = lac_log elif self.CP.lateralTuning.which() == 'lqr': controlsState.lateralControlState.lqrState = lac_log elif self.CP.lateralTuning.which() == 'indi': controlsState.lateralControlState.indiState = lac_log self.pm.send('controlsState', dat) # carState car_events = self.events.to_msg() cs_send = messaging.new_message('carState') cs_send.valid = CS.canValid cs_send.carState = CS cs_send.carState.events = car_events self.pm.send('carState', cs_send) # carEvents - logged every second or on change if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev): ce_send = messaging.new_message('carEvents', len(self.events)) ce_send.carEvents = car_events self.pm.send('carEvents', ce_send) self.events_prev = self.events.names.copy() # carParams - logged every 50 seconds (> 1 per segment) if (self.sm.frame % int(50. / DT_CTRL) == 0): cp_send = messaging.new_message('carParams') cp_send.carParams = self.CP self.pm.send('carParams', cp_send) # carControl cc_send = messaging.new_message('carControl') cc_send.valid = CS.canValid cc_send.carControl = CC self.pm.send('carControl', cc_send) # copy CarControl to pass to CarInterface on the next iteration self.CC = CC def step(self): start_time = sec_since_boot() self.prof.checkpoint("Ratekeeper", ignore=True) # Sample data from sockets and get a carState CS = self.data_sample() self.prof.checkpoint("Sample") if self.read_only: self.hyundai_lkas = self.read_only elif CS.cruiseState.enabled and self.hyundai_lkas: self.hyundai_lkas = False self.update_events(CS) if not self.hyundai_lkas: # Update control state self.state_transition(CS) self.prof.checkpoint("State transition") # Compute actuators (runs PID loops and lateral MPC) actuators, v_acc, a_acc, lac_log = self.state_control(CS) self.prof.checkpoint("State Control") # Publish data self.publish_logs(CS, start_time, actuators, v_acc, a_acc, lac_log) self.prof.checkpoint("Sent") if not CS.cruiseState.enabled and not self.hyundai_lkas: self.hyundai_lkas = True def controlsd_thread(self): while True: self.step() self.rk.monitor_time() self.prof.display()
class Controls: def __init__(self, sm=None, pm=None, can_sock=None): config_realtime_process(4 if TICI else 3, Priority.CTRL_HIGH) # Setup sockets self.pm = pm if self.pm is None: self.pm = messaging.PubMaster([ 'sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams' ]) self.sm = sm if self.sm is None: ignore = ['driverCameraState', 'managerState' ] if SIMULATION else None self.sm = messaging.SubMaster([ 'deviceState', 'pandaState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman', 'roadCameraState', 'driverCameraState', 'managerState', 'liveParameters', 'radarState' ], ignore_alive=ignore) self.can_sock = can_sock if can_sock is None: can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100 self.can_sock = messaging.sub_sock('can', timeout=can_timeout) # wait for one pandaState and one CAN packet hw_type = messaging.recv_one( self.sm.sock['pandaState']).pandaState.pandaType has_relay = hw_type in [ PandaType.blackPanda, PandaType.uno, PandaType.dos ] print("Waiting for CAN messages...") get_one_can(self.can_sock) self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'], has_relay) # read params params = Params() self.is_metric = params.get_bool("IsMetric") self.is_ldw_enabled = params.get_bool("IsLdwEnabled") self.enable_lte_onroad = params.get_bool("EnableLteOnroad") community_feature_toggle = params.get_bool("CommunityFeaturesToggle") openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle") passive = params.get_bool("Passive") or not openpilot_enabled_toggle # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' # If stock camera is disconnected, we loaded car controls and it's not dashcam mode controller_available = self.CP.enableCamera and self.CI.CC is not None and not passive and not self.CP.dashcamOnly community_feature_disallowed = self.CP.communityFeature and not community_feature_toggle self.read_only = not car_recognized or not controller_available or \ self.CP.dashcamOnly or community_feature_disallowed if self.read_only: self.CP.safetyModel = car.CarParams.SafetyModel.noOutput # Write CarParams for radard and boardd safety mode cp_bytes = self.CP.to_bytes() params.put("CarParams", cp_bytes) put_nonblocking("CarParamsCache", cp_bytes) self.CC = car.CarControl.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP, self.CI.compute_gb) self.VM = VehicleModel(self.CP) if self.CP.steerControlType == car.CarParams.SteerControlType.angle: self.LaC = LatControlAngle(self.CP) elif self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP) elif self.CP.lateralTuning.which() == 'indi': self.LaC = LatControlINDI(self.CP) elif self.CP.lateralTuning.which() == 'lqr': self.LaC = LatControlLQR(self.CP) self.state = State.disabled self.enabled = False self.active = False self.can_rcv_error = False self.soft_disable_timer = 0 self.v_cruise_kph = 255 self.v_cruise_kph_last = 0 self.mismatch_counter = 0 self.can_error_counter = 0 self.last_blinker_frame = 0 self.saturated_count = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.logged_comm_issue = False self.angle_steers_des = 0. self.road_limit_speed = 0 self.road_limit_left_dist = 0 self.v_cruise_kph_limit = 0 self.curve_speed_ms = 255. self.sm['liveCalibration'].calStatus = Calibration.CALIBRATED self.sm['deviceState'].freeSpacePercent = 100 self.sm['driverMonitoringState'].events = [] self.sm['driverMonitoringState'].awarenessStatus = 1. self.sm['driverMonitoringState'].faceDetected = False self.sm['liveParameters'].valid = True self.startup_event = get_startup_event(car_recognized, controller_available, hw_type) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if community_feature_disallowed: self.events.add(EventName.communityFeatureDisallowed, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) # if hw_type == PandaType.greyPanda: # self.events.add(EventName.startupGreyPanda, static=True) elif self.read_only: self.events.add(EventName.dashcamMode, static=True) # controlsd is driven by can recv, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) self.prof = Profiler(False) # off by default def update_events(self, CS): """Compute carEvents from carState""" self.events.clear() self.events.add_from_msg(CS.events) self.events.add_from_msg(self.sm['driverMonitoringState'].events) # Handle startup event if self.startup_event is not None: self.events.add(self.startup_event) self.startup_event = None # Create events for battery, temperature, disk space, and memory if self.sm['deviceState'].batteryPercent < 1 and self.sm[ 'deviceState'].chargingError: # at zero percent battery, while discharging, OP should not allowed self.events.add(EventName.lowBattery) if self.sm['deviceState'].thermalStatus >= ThermalStatus.red: self.events.add(EventName.overheat) if self.sm['deviceState'].freeSpacePercent < 7: # under 7% of space free no enable allowed self.events.add(EventName.outOfSpace) if self.sm['deviceState'].memoryUsagePercent > 90: self.events.add(EventName.lowMemory) # Alert if fan isn't spinning for 5 seconds if self.sm['pandaState'].pandaType in [PandaType.uno, PandaType.dos]: if self.sm['pandaState'].fanSpeedRpm == 0 and self.sm[ 'deviceState'].fanSpeedPercentDesired > 50: if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 5.0: self.events.add(EventName.fanMalfunction) else: self.last_functional_fan_frame = self.sm.frame # Handle calibration status cal_status = self.sm['liveCalibration'].calStatus if cal_status != Calibration.CALIBRATED: if cal_status == Calibration.UNCALIBRATED: self.events.add(EventName.calibrationIncomplete) else: self.events.add(EventName.calibrationInvalid) # Handle lane change if self.sm[ 'lateralPlan'].laneChangeState == LaneChangeState.preLaneChange: direction = self.sm['lateralPlan'].laneChangeDirection if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \ (CS.rightBlindspot and direction == LaneChangeDirection.right): self.events.add(EventName.laneChangeBlocked) else: if direction == LaneChangeDirection.left: self.events.add(EventName.preLaneChangeLeft) else: self.events.add(EventName.preLaneChangeRight) elif self.sm['lateralPlan'].laneChangeState in [ LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing ]: self.events.add(EventName.laneChange) if self.can_rcv_error or (not CS.canValid and self.sm.frame > 5 / DT_CTRL): self.events.add(EventName.canError) safety_mismatch = self.sm[ 'pandaState'].safetyModel != self.CP.safetyModel safety_mismatch = safety_mismatch or self.sm[ 'pandaState'].safetyParam != self.CP.safetyParam if (safety_mismatch and self.sm.frame > 2 / DT_CTRL) or self.mismatch_counter >= 200: self.events.add(EventName.controlsMismatch) if not self.sm['liveParameters'].valid: self.events.add(EventName.vehicleModelInvalid) if len(self.sm['radarState'].radarErrors): self.events.add(EventName.radarFault) #elif not self.sm.all_alive_and_valid(): #self.events.add(EventName.commIssue) #if not self.logged_comm_issue: #cloudlog.error(f"commIssue - valid: {self.sm.valid} - alive: {self.sm.alive}") #self.logged_comm_issue = True else: self.logged_comm_issue = False if not self.sm['lateralPlan'].mpcSolutionValid: self.events.add(EventName.plannerError) if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR: if self.sm.frame > 5 / DT_CTRL: # Give locationd some time to receive all the inputs self.events.add(EventName.sensorDataInvalid) if not self.sm['liveLocationKalman'].posenetOK: self.events.add(EventName.posenetInvalid) if not self.sm['liveLocationKalman'].deviceStable: self.events.add(EventName.deviceFalling) if log.PandaState.FaultType.relayMalfunction in self.sm[ 'pandaState'].faults: self.events.add(EventName.relayMalfunction) if self.sm['longitudinalPlan'].fcw: self.events.add(EventName.fcw) # TODO: fix simulator if not SIMULATION: #if not NOSENSOR: #if not self.sm['liveLocationKalman'].gpsOK and (self.distance_traveled > 1000) and \ #(not TICI or self.enable_lte_onroad): # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes #self.events.add(EventName.noGps) if not self.sm.all_alive(['roadCameraState', 'driverCameraState' ]) and (self.sm.frame > 5 / DT_CTRL): self.events.add(EventName.cameraMalfunction) if self.sm['modelV2'].frameDropPerc > 20: self.events.add(EventName.modeldLagging) # Check if all manager processes are running not_running = set(p.name for p in self.sm['managerState'].processes if not p.running) if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES): self.events.add(EventName.processNotRunning) # Only allow engagement with brake pressed when stopped behind another stopped car if CS.brakePressed and self.sm['longitudinalPlan'].vTargetFuture >= STARTING_TARGET_SPEED \ and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3: self.events.add(EventName.noTarget) def data_sample(self): """Receive data from sockets and update carState""" # Update carState from CAN can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True) CS = self.CI.update(self.CC, can_strs) self.sm.update(0) # Check for CAN timeout if not can_strs: self.can_error_counter += 1 self.can_rcv_error = True else: self.can_rcv_error = False # When the panda and controlsd do not agree on controls_allowed # we want to disengage openpilot. However the status from the panda goes through # another socket other than the CAN messages and one can arrive earlier than the other. # Therefore we allow a mismatch for two samples, then we trigger the disengagement. if not self.enabled: self.mismatch_counter = 0 if not self.sm['pandaState'].controlsAllowed and self.enabled: self.mismatch_counter += 1 self.distance_traveled += CS.vEgo * DT_CTRL return CS def cal_curve_speed(self, sm, v_ego, frame): if frame % 10 == 0: md = sm['modelV2'] if md is not None and len( md.position.x) == TRAJECTORY_SIZE and len( md.position.y) == TRAJECTORY_SIZE: x = md.position.x y = md.position.y dy = np.gradient(y, x) d2y = np.gradient(dy, x) curv = d2y / (1 + dy**2)**1.5 curv = curv[5:TRAJECTORY_SIZE - 10] a_y_max = 2.975 - v_ego * 0.0375 # ~1.85 @ 75mph, ~2.6 @ 25mph v_curvature = np.sqrt(a_y_max / np.clip(np.abs(curv), 1e-4, None)) model_speed = np.mean(v_curvature) * 0.9 if model_speed < v_ego: self.curve_speed_ms = float( max(model_speed, 32. * CV.KPH_TO_MS)) else: self.curve_speed_ms = 255. if np.isnan(self.curve_speed_ms): self.curve_speed_ms = 255. else: self.curve_speed_ms = 255. return self.curve_speed_ms def state_transition(self, CS): """Compute conditional state transitions and execute actions on state transitions""" self.v_cruise_kph_last = self.v_cruise_kph # if stock cruise is completely disabled, then we can use our own set speed logic if not self.CP.enableCruise: self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.buttonEvents, self.enabled) elif self.CP.enableCruise and CS.cruiseState.enabled: self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH curv_speed_ms = self.cal_curve_speed(self.sm, CS.vEgo, self.sm.frame) self.v_cruise_kph = min(self.v_cruise_kph, curv_speed_ms * CV.MS_TO_KPH) limit_speed, self.road_limit_speed, self.road_limit_left_dist, first_started, log = road_speed_limiter_get_max_speed( CS, self.v_cruise_kph) if limit_speed > 20: self.v_cruise_kph_limit = min(limit_speed, self.v_cruise_kph) if limit_speed < CS.vEgo * CV.MS_TO_KPH: self.events.add(EventName.slowingDownSpeed) else: self.v_cruise_kph_limit = self.v_cruise_kph # decrease the soft disable timer at every step, as it's reset on # entrance in SOFT_DISABLING state self.soft_disable_timer = max(0, self.soft_disable_timer - 1) self.current_alert_types = [ET.PERMANENT] # ENABLED, PRE ENABLING, SOFT DISABLING if self.state != State.disabled: # user and immediate disable always have priority in a non-disabled state if self.events.any(ET.USER_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.USER_DISABLE) elif self.events.any(ET.IMMEDIATE_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.IMMEDIATE_DISABLE) else: # ENABLED if self.state == State.enabled: if self.events.any(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = 300 # 3s self.current_alert_types.append(ET.SOFT_DISABLE) # SOFT DISABLING elif self.state == State.softDisabling: if not self.events.any(ET.SOFT_DISABLE): # no more soft disabling condition, so go back to ENABLED self.state = State.enabled elif self.events.any( ET.SOFT_DISABLE) and self.soft_disable_timer > 0: self.current_alert_types.append(ET.SOFT_DISABLE) elif self.soft_disable_timer <= 0: self.state = State.disabled # PRE ENABLING elif self.state == State.preEnabled: if not self.events.any(ET.PRE_ENABLE): self.state = State.enabled else: self.current_alert_types.append(ET.PRE_ENABLE) # DISABLED elif self.state == State.disabled: if self.events.any(ET.ENABLE): if self.events.any(ET.NO_ENTRY): self.current_alert_types.append(ET.NO_ENTRY) else: if self.events.any(ET.PRE_ENABLE): self.state = State.preEnabled else: self.state = State.enabled self.current_alert_types.append(ET.ENABLE) self.v_cruise_kph = initialize_v_cruise( CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last) # Check if actuators are enabled self.active = self.state == State.enabled or self.state == State.softDisabling if self.active: self.current_alert_types.append(ET.WARNING) # Check if openpilot is engaged self.enabled = self.active or self.state == State.preEnabled def state_control(self, CS): """Given the state, this function returns an actuators packet""" # Neokii's live tune # Update VehicleModel params = self.sm['liveParameters'] x = max(params.stiffnessFactor, 0.1) #sr = max(params.steerRatio, 0.1) if ntune_isEnabled('useLiveSteerRatio'): sr = max(self.sm['liveParameters'].steerRatio, 0.1) else: if self.CP.carName in [CAR.VOLT]: sr = interp(abs(self.angle_steers_des), [5., 35.], [13.5, 17.7]) else: sr = max(ntune_get('steerRatio'), 0.1) self.VM.update_params(x, sr) lat_plan = self.sm['lateralPlan'] long_plan = self.sm['longitudinalPlan'] actuators = car.CarControl.Actuators.new_message() if CS.leftBlinker or CS.rightBlinker: self.last_blinker_frame = self.sm.frame # State specific actions if not self.active: self.LaC.reset() self.LoC.reset(v_pid=CS.vEgo) long_plan_age = DT_CTRL * (self.sm.frame - self.sm.rcv_frame['longitudinalPlan']) # no greater than dt mpc + dt, to prevent too high extraps dt = min(long_plan_age, LON_MPC_STEP + DT_CTRL) + DT_CTRL a_acc_sol = long_plan.aStart + (dt / LON_MPC_STEP) * ( long_plan.aTarget - long_plan.aStart) v_acc_sol = long_plan.vStart + dt * (a_acc_sol + long_plan.aStart) / 2.0 # Gas/Brake PID loop actuators.gas, actuators.brake = self.LoC.update( self.active, CS, v_acc_sol, long_plan.vTargetFuture, a_acc_sol, self.CP) # Steering PID loop and lateral MPC actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update( self.active, CS, self.CP, self.VM, params, lat_plan) # Check for difference between desired angle and angle for angle based control angle_control_saturated = self.CP.steerControlType == car.CarParams.SteerControlType.angle and \ abs(actuators.steeringAngleDeg - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD if angle_control_saturated and not CS.steeringPressed and self.active: self.saturated_count += 1 else: self.saturated_count = 0 # Send a "steering required alert" if saturation count has reached the limit if (lac_log.saturated and not CS.steeringPressed) or \ (self.saturated_count > STEER_ANGLE_SATURATION_TIMEOUT): if len(lat_plan.dPathPoints): # Check if we deviated from the path left_deviation = actuators.steer > 0 and lat_plan.dPathPoints[ 0] < -0.1 right_deviation = actuators.steer < 0 and lat_plan.dPathPoints[ 0] > 0.1 # Bellow 2Lines' notations are for disable Alerts # if left_deviation or right_deviation: # self.events.add(EventName.steerSaturated) return actuators, v_acc_sol, a_acc_sol, lac_log def publish_logs(self, CS, start_time, actuators, v_acc, a_acc, lac_log): """Send actuators and hud commands to the car, send controlsstate and MPC logging""" CC = car.CarControl.new_message() CC.enabled = self.enabled CC.actuators = actuators CC.cruiseControl.override = True CC.cruiseControl.cancel = not self.CP.enableCruise or ( not self.enabled and CS.cruiseState.enabled) # Some override values for Honda # brake discount removes a sharp nonlinearity brake_discount = (1.0 - clip(actuators.brake * 3., 0.0, 1.0)) speed_override = max(0.0, (self.LoC.v_pid + CS.cruiseState.speedOffset) * brake_discount) CC.cruiseControl.speedOverride = float( speed_override if self.CP.enableCruise else 0.0) CC.cruiseControl.accelOverride = self.CI.calc_accel_override( CS.aEgo, self.sm['longitudinalPlan'].aTarget, CS.vEgo, self.sm['longitudinalPlan'].vTarget) CC.hudControl.setSpeed = float(self.v_cruise_kph_limit * CV.KPH_TO_MS) CC.hudControl.speedVisible = self.enabled CC.hudControl.lanesVisible = self.enabled CC.hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead right_lane_visible = self.sm['lateralPlan'].rProb > 0.5 left_lane_visible = self.sm['lateralPlan'].lProb > 0.5 CC.hudControl.rightLaneVisible = bool(right_lane_visible) CC.hudControl.leftLaneVisible = bool(left_lane_visible) recent_blinker = (self.sm.frame - self.last_blinker_frame ) * DT_CTRL < 5.0 # 5s blinker cooldown ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \ and not self.active and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED meta = self.sm['modelV2'].meta if len(meta.desirePrediction) and ldw_allowed: l_lane_change_prob = meta.desirePrediction[Desire.laneChangeLeft - 1] r_lane_change_prob = meta.desirePrediction[Desire.laneChangeRight - 1] cameraOffset = ntune_get("cameraOffset") l_lane_close = left_lane_visible and ( self.sm['modelV2'].laneLines[1].y[0] > -(1.08 + cameraOffset)) r_lane_close = right_lane_visible and ( self.sm['modelV2'].laneLines[2].y[0] < (1.08 - cameraOffset)) CC.hudControl.leftLaneDepart = bool( l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) CC.hudControl.rightLaneDepart = bool( r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart: self.events.add(EventName.ldw) clear_event = ET.WARNING if ET.WARNING not in self.current_alert_types else None alerts = self.events.create_alerts(self.current_alert_types, [self.CP, self.sm, self.is_metric]) self.AM.add_many(self.sm.frame, alerts, self.enabled) self.AM.process_alerts(self.sm.frame, clear_event) CC.hudControl.visualAlert = self.AM.visual_alert if not self.read_only: # send car controls over can can_sends = self.CI.apply(CC) self.pm.send( 'sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid)) force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \ (self.state == State.softDisabling) # Curvature & Steering angle params = self.sm['liveParameters'] lat_plan = self.sm['lateralPlan'] steer_angle_without_offset = math.radians(CS.steeringAngleDeg - params.angleOffsetAverageDeg) curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo) self.angle_steers_des = math.degrees( self.VM.get_steer_from_curvature(-lat_plan.curvature, CS.vEgo)) self.angle_steers_des += params.angleOffsetDeg # controlsState dat = messaging.new_message('controlsState') dat.valid = CS.canValid controlsState = dat.controlsState controlsState.alertText1 = self.AM.alert_text_1 controlsState.alertText2 = self.AM.alert_text_2 controlsState.alertSize = self.AM.alert_size controlsState.alertStatus = self.AM.alert_status controlsState.alertBlinkingRate = self.AM.alert_rate controlsState.alertType = self.AM.alert_type controlsState.alertSound = self.AM.audible_alert controlsState.canMonoTimes = list(CS.canMonoTimes) controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime[ 'longitudinalPlan'] controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan'] controlsState.enabled = self.enabled controlsState.active = self.active # bellow 3Lines are for Wheel Rotation controlsState.vEgo = CS.vEgo controlsState.vEgoRaw = CS.vEgoRaw controlsState.steerOverride = CS.steeringPressed # controlsState.angleSteers = CS.steeringAngleDeg controlsState.curvature = curvature controlsState.steeringAngleDesiredDeg = self.angle_steers_des controlsState.state = self.state controlsState.engageable = not self.events.any(ET.NO_ENTRY) controlsState.longControlState = self.LoC.long_control_state controlsState.vPid = float(self.LoC.v_pid) controlsState.vCruise = float(self.v_cruise_kph_limit) controlsState.upAccelCmd = float(self.LoC.pid.p) controlsState.uiAccelCmd = float(self.LoC.pid.i) controlsState.ufAccelCmd = float(self.LoC.pid.f) controlsState.vTargetLead = float(v_acc) controlsState.aTarget = float(a_acc) controlsState.cumLagMs = -self.rk.remaining * 1000. controlsState.startMonoTime = int(start_time * 1e9) controlsState.forceDecel = bool(force_decel) controlsState.canErrorCounter = self.can_error_counter controlsState.angleSteers = steer_angle_without_offset * CV.RAD_TO_DEG controlsState.roadLimitSpeed = self.road_limit_speed controlsState.roadLimitSpeedLeftDist = self.road_limit_left_dist # display SR/SRC/SAD on Ui controlsState.steerRatio = self.VM.sR controlsState.steerRateCost = ntune_get('steerRateCost') controlsState.steerActuatorDelay = ntune_get('steerActuatorDelay') if self.CP.steerControlType == car.CarParams.SteerControlType.angle: controlsState.lateralControlState.angleState = lac_log elif self.CP.lateralTuning.which() == 'pid': controlsState.lateralControlState.pidState = lac_log elif self.CP.lateralTuning.which() == 'lqr': controlsState.lateralControlState.lqrState = lac_log elif self.CP.lateralTuning.which() == 'indi': controlsState.lateralControlState.indiState = lac_log self.pm.send('controlsState', dat) # carState car_events = self.events.to_msg() cs_send = messaging.new_message('carState') cs_send.valid = CS.canValid cs_send.carState = CS cs_send.carState.events = car_events self.pm.send('carState', cs_send) # carEvents - logged every second or on change if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev): ce_send = messaging.new_message('carEvents', len(self.events)) ce_send.carEvents = car_events self.pm.send('carEvents', ce_send) self.events_prev = self.events.names.copy() # carParams - logged every 50 seconds (> 1 per segment) if (self.sm.frame % int(50. / DT_CTRL) == 0): cp_send = messaging.new_message('carParams') cp_send.carParams = self.CP self.pm.send('carParams', cp_send) # carControl cc_send = messaging.new_message('carControl') cc_send.valid = CS.canValid cc_send.carControl = CC self.pm.send('carControl', cc_send) # copy CarControl to pass to CarInterface on the next iteration self.CC = CC def step(self): start_time = sec_since_boot() self.prof.checkpoint("Ratekeeper", ignore=True) # Sample data from sockets and get a carState CS = self.data_sample() self.prof.checkpoint("Sample") self.update_events(CS) if not self.read_only: # Update control state self.state_transition(CS) self.prof.checkpoint("State transition") # Compute actuators (runs PID loops and lateral MPC) actuators, v_acc, a_acc, lac_log = self.state_control(CS) self.prof.checkpoint("State Control") # Publish data self.publish_logs(CS, start_time, actuators, v_acc, a_acc, lac_log) self.prof.checkpoint("Sent") def controlsd_thread(self): while True: self.step() self.rk.monitor_time() self.prof.display()
def cycle_alerts(duration=200, is_metric=False): # all alerts #alerts = list(EVENTS.keys()) # this plays each type of audible alert alerts = [ (EventName.buttonEnable, ET.ENABLE), (EventName.buttonCancel, ET.USER_DISABLE), (EventName.wrongGear, ET.NO_ENTRY), (EventName.vehicleModelInvalid, ET.SOFT_DISABLE), (EventName.accFaulted, ET.IMMEDIATE_DISABLE), # DM sequence (EventName.preDriverDistracted, ET.WARNING), (EventName.promptDriverDistracted, ET.WARNING), (EventName.driverDistracted, ET.WARNING), ] # debug alerts alerts = [ (EventName.highCpuUsage, ET.NO_ENTRY), (EventName.lowMemory, ET.PERMANENT), (EventName.overheat, ET.PERMANENT), (EventName.outOfSpace, ET.PERMANENT), (EventName.modeldLagging, ET.PERMANENT), ] CP = CarInterface.get_params("HONDA CIVIC 2016") sm = messaging.SubMaster([ 'deviceState', 'pandaStates', 'roadCameraState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman' ]) sm['deviceState'].freeSpacePercent = 55 sm['deviceState'].memoryUsagePercent = 55 sm['deviceState'].cpuTempC = [1, 2, 100] sm['deviceState'].gpuTempC = [211, 2, 100] sm['deviceState'].cpuUsagePercent = [23, 54] sm['modelV2'].frameDropPerc = 20 pm = messaging.PubMaster(['controlsState', 'pandaStates', 'deviceState']) events = Events() AM = AlertManager() frame = 0 while True: for alert, et in alerts: events.clear() events.add(alert) a = events.create_alerts([ et, ], [CP, sm, is_metric, 0]) AM.add_many(frame, a) alert = AM.process_alerts(frame, []) print(alert) for _ in range(duration): dat = messaging.new_message() dat.init('controlsState') dat.controlsState.enabled = False if alert: dat.controlsState.alertText1 = alert.alert_text_1 dat.controlsState.alertText2 = alert.alert_text_2 dat.controlsState.alertSize = alert.alert_size dat.controlsState.alertStatus = alert.alert_status dat.controlsState.alertBlinkingRate = alert.alert_rate dat.controlsState.alertType = alert.alert_type dat.controlsState.alertSound = alert.audible_alert pm.send('controlsState', dat) dat = messaging.new_message() dat.init('deviceState') dat.deviceState.started = True pm.send('deviceState', dat) dat = messaging.new_message('pandaStates', 1) dat.pandaStates[0].ignitionLine = True dat.pandaStates[0].pandaType = log.PandaState.PandaType.uno pm.send('pandaStates', dat) frame += 1 time.sleep(DT_CTRL)
def cycle_alerts(duration=200, is_metric=False): # all alerts #alerts = list(EVENTS.keys()) # this plays each type of audible alert alerts = [ (EventName.buttonEnable, ET.ENABLE), (EventName.buttonCancel, ET.USER_DISABLE), (EventName.wrongGear, ET.NO_ENTRY), (EventName.vehicleModelInvalid, ET.SOFT_DISABLE), (EventName.accFaulted, ET.IMMEDIATE_DISABLE), # DM sequence (EventName.preDriverDistracted, ET.WARNING), (EventName.promptDriverDistracted, ET.WARNING), (EventName.driverDistracted, ET.WARNING), ] CP = CarInterface.get_params("HONDA CIVIC 2016") sm = messaging.SubMaster([ 'deviceState', 'pandaStates', 'roadCameraState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman' ]) pm = messaging.PubMaster(['controlsState', 'pandaStates', 'deviceState']) events = Events() AM = AlertManager() frame = 0 while True: current_alert_types = [ ET.PERMANENT, ET.USER_DISABLE, ET.IMMEDIATE_DISABLE, ET.SOFT_DISABLE, ET.PRE_ENABLE, ET.NO_ENTRY, ET.ENABLE, ET.WARNING ] for alert, et in alerts: events.clear() events.add(alert) a = events.create_alerts([ et, ], [CP, sm, is_metric, 0]) AM.add_many(frame, a) AM.process_alerts(frame) print(AM.alert) for _ in range(duration): dat = messaging.new_message() dat.init('controlsState') dat.controlsState.enabled = True dat.controlsState.alertText1 = AM.alert_text_1 dat.controlsState.alertText2 = AM.alert_text_2 dat.controlsState.alertSize = AM.alert_size dat.controlsState.alertStatus = AM.alert_status dat.controlsState.alertBlinkingRate = AM.alert_rate dat.controlsState.alertType = AM.alert_type dat.controlsState.alertSound = AM.audible_alert pm.send('controlsState', dat) dat = messaging.new_message() dat.init('deviceState') dat.deviceState.started = True pm.send('deviceState', dat) dat = messaging.new_message('pandaStates', 1) dat.pandaStates[0].ignitionLine = True dat.pandaStates[0].pandaType = log.PandaState.PandaType.uno pm.send('pandaStates', dat) frame += 1 time.sleep(DT_CTRL)
class Controls: def __init__(self, sm=None, pm=None, can_sock=None): config_realtime_process(3, Priority.CTRL_HIGH) self.op_params = opParams() # Setup sockets self.pm = pm if self.pm is None: self.pm = messaging.PubMaster([ 'sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams' ]) self.sm = sm if self.sm is None: ignore = ['driverCameraState', 'managerState' ] if SIMULATION else None self.sm = messaging.SubMaster([ 'deviceState', 'pandaState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman', 'roadCameraState', 'driverCameraState', 'managerState', 'liveParameters', 'radarState' ], ignore_alive=ignore) self.sm_smiskol = messaging.SubMaster([ 'radarState', 'dynamicFollowData', 'liveTracks', 'dynamicFollowButton', 'laneSpeed', 'dynamicCameraOffset', 'modelLongButton' ]) self.op_params = opParams() self.df_manager = dfManager() self.support_white_panda = self.op_params.get('support_white_panda') self.last_model_long = False self.can_sock = can_sock if can_sock is None: can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100 self.can_sock = messaging.sub_sock('can', timeout=can_timeout) # wait for one pandaState and one CAN packet panda_type = messaging.recv_one( self.sm.sock['pandaState']).pandaState.pandaType has_relay = panda_type in [ PandaType.blackPanda, PandaType.uno, PandaType.dos ] print("Waiting for CAN messages...") get_one_can(self.can_sock) self.CI, self.CP, candidate = get_car(self.can_sock, self.pm.sock['sendcan'], has_relay) threading.Thread(target=log_fingerprint, args=[candidate]).start() # read params params = Params() self.is_metric = params.get("IsMetric", encoding='utf8') == "1" self.is_ldw_enabled = params.get("IsLdwEnabled", encoding='utf8') == "1" community_feature_toggle = params.get("CommunityFeaturesToggle", encoding='utf8') == "1" openpilot_enabled_toggle = params.get("OpenpilotEnabledToggle", encoding='utf8') == "1" passive = params.get( "Passive", encoding='utf8') == "1" or not openpilot_enabled_toggle # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' # If stock camera is disconnected, we loaded car controls and it's not dashcam mode controller_available = self.CP.enableCamera and self.CI.CC is not None and not passive and not self.CP.dashcamOnly community_feature_disallowed = self.CP.communityFeature and not community_feature_toggle self.read_only = not car_recognized or not controller_available or \ self.CP.dashcamOnly or community_feature_disallowed if self.read_only: self.CP.safetyModel = car.CarParams.SafetyModel.noOutput # Write CarParams for radard and boardd safety mode cp_bytes = self.CP.to_bytes() params.put("CarParams", cp_bytes) put_nonblocking("CarParamsCache", cp_bytes) self.CC = car.CarControl.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP, self.CI.compute_gb, candidate) self.VM = VehicleModel(self.CP) if self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP) elif self.CP.lateralTuning.which() == 'indi': self.LaC = LatControlINDI(self.CP) elif self.CP.lateralTuning.which() == 'lqr': self.LaC = LatControlLQR(self.CP) self.state = State.disabled self.enabled = False self.active = False self.can_rcv_error = False self.soft_disable_timer = 0 self.v_cruise_kph = 255 self.v_cruise_kph_last = 0 self.mismatch_counter = 0 self.can_error_counter = 0 self.last_blinker_frame = 0 self.saturated_count = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.logged_comm_issue = False self.sm['liveCalibration'].calStatus = Calibration.CALIBRATED self.sm['deviceState'].freeSpacePercent = 100 self.sm['driverMonitoringState'].events = [] self.sm['driverMonitoringState'].awarenessStatus = 1. self.sm['driverMonitoringState'].faceDetected = False self.startup_event = get_startup_event(car_recognized, controller_available) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if community_feature_disallowed: self.events.add(EventName.communityFeatureDisallowed, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) # controlsd is driven by can recv, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) self.prof = Profiler(False) # off by default self.lead_rel_speed = 255 self.lead_long_dist = 255 def update_events(self, CS): """Compute carEvents from carState""" self.events.clear() self.events.add_from_msg(CS.events) self.events.add_from_msg(self.sm['driverMonitoringState'].events) # Handle startup event if self.startup_event is not None: self.events.add(self.startup_event) self.startup_event = None # Create events for battery, temperature, disk space, and memory if self.sm['deviceState'].batteryPercent < 1 and self.sm[ 'deviceState'].chargingError: # at zero percent battery, while discharging, OP should not allowed self.events.add(EventName.lowBattery) if self.sm['deviceState'].thermalStatus >= ThermalStatus.red: self.events.add(EventName.overheat) if self.sm['deviceState'].freeSpacePercent < 7: # under 7% of space free no enable allowed self.events.add(EventName.outOfSpace) if self.sm['deviceState'].memoryUsagePercent > 90: self.events.add(EventName.lowMemory) # Alert if fan isn't spinning for 5 seconds if self.sm['pandaState'].pandaType in [PandaType.uno, PandaType.dos]: if self.sm['pandaState'].fanSpeedRpm == 0 and self.sm[ 'deviceState'].fanSpeedPercentDesired > 50: if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 5.0: self.events.add(EventName.fanMalfunction) else: self.last_functional_fan_frame = self.sm.frame # Handle calibration status cal_status = self.sm['liveCalibration'].calStatus if cal_status != Calibration.CALIBRATED: if cal_status == Calibration.UNCALIBRATED: self.events.add(EventName.calibrationIncomplete) else: self.events.add(EventName.calibrationInvalid) # Handle lane change if self.sm[ 'lateralPlan'].laneChangeState == LaneChangeState.preLaneChange: direction = self.sm['lateralPlan'].laneChangeDirection if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \ (CS.rightBlindspot and direction == LaneChangeDirection.right): self.events.add(EventName.laneChangeBlocked) else: if direction == LaneChangeDirection.left: self.events.add(EventName.preLaneChangeLeft) else: self.events.add(EventName.preLaneChangeRight) elif self.sm['lateralPlan'].laneChangeState in [ LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing ]: self.events.add(EventName.laneChange) if self.can_rcv_error or (not CS.canValid and self.sm.frame > 5 / DT_CTRL): self.events.add(EventName.canError) if (self.sm['pandaState'].safetyModel != self.CP.safetyModel and self.sm.frame > 2 / DT_CTRL) or \ self.mismatch_counter >= 200: self.events.add(EventName.controlsMismatch) if len(self.sm['radarState'].radarErrors): self.events.add(EventName.radarFault) elif not self.sm.valid['liveParameters']: self.events.add(EventName.vehicleModelInvalid) elif not self.sm.all_alive_and_valid(): self.events.add(EventName.commIssue) if not self.logged_comm_issue: cloudlog.error( f"commIssue - valid: {self.sm.valid} - alive: {self.sm.alive}" ) self.logged_comm_issue = True else: self.logged_comm_issue = False if not self.sm['lateralPlan'].mpcSolutionValid: self.events.add(EventName.plannerError) if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR: if self.sm.frame > 5 / DT_CTRL: # Give locationd some time to receive all the inputs self.events.add(EventName.sensorDataInvalid) if not self.sm['liveLocationKalman'].posenetOK: self.events.add(EventName.posenetInvalid) if not self.sm['liveLocationKalman'].deviceStable: self.events.add(EventName.deviceFalling) if log.PandaState.FaultType.relayMalfunction in self.sm[ 'pandaState'].faults: self.events.add(EventName.relayMalfunction) if self.sm['longitudinalPlan'].fcw: self.events.add(EventName.fcw) # TODO: fix simulator # if not SIMULATION: # if not NOSENSOR and not self.support_white_panda: # if not self.sm['liveLocationKalman'].gpsOK and (self.distance_traveled > 1000) and not TICI: # # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes # self.events.add(EventName.noGps) if not self.sm.all_alive(['roadCameraState', 'driverCameraState' ]) and (self.sm.frame > 5 / DT_CTRL): self.events.add(EventName.cameraMalfunction) if self.sm['modelV2'].frameDropPerc > 20: self.events.add(EventName.modeldLagging) # Check if all manager processes are running not_running = set(p.name for p in self.sm['managerState'].processes if not p.running) if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES): self.events.add(EventName.processNotRunning) # Only allow engagement with brake pressed when stopped behind another stopped car if CS.brakePressed and self.sm['longitudinalPlan'].vTargetFuture >= STARTING_TARGET_SPEED \ and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3 and not self.last_model_long: self.events.add(EventName.noTarget) self.add_stock_additions_alerts(CS) # vision-only fcw, can be disabled if radar is present if self.sm.updated['radarState']: self.lead_rel_speed = self.sm['radarState'].leadOne.vRel self.lead_long_dist = self.sm['radarState'].leadOne.dRel #if CS.cruiseState.enabled and self.lead_long_dist > 5 and self.lead_long_dist < 100 and self.lead_rel_speed <= -0.5 and CS.vEgo >= 5 and \ # ((self.lead_long_dist/abs(self.lead_rel_speed) < 2.) or (self.lead_long_dist/abs(self.lead_rel_speed) < 4. and self.lead_rel_speed < -10) or \ # (self.lead_long_dist/abs(self.lead_rel_speed) < 5. and self.lead_long_dist/CS.vEgo < 1.5)): # self.events.add(EventName.fcw) def add_stock_additions_alerts(self, CS): self.AM.SA_set_frame(self.sm.frame) self.AM.SA_set_enabled(self.enabled) # alert priority is defined by code location, keeping is highest, then lane speed alert, then auto-df alert if self.sm_smiskol['modelLongButton'].enabled != self.last_model_long: extra_text_1 = 'disabled!' if self.last_model_long else 'enabled!' extra_text_2 = '' if self.last_model_long else ', model may behave unexpectedly' self.AM.SA_add('modelLongAlert', extra_text_1=extra_text_1, extra_text_2=extra_text_2) return if self.sm_smiskol['dynamicCameraOffset'].keepingLeft: self.AM.SA_add('laneSpeedKeeping', extra_text_1='LEFT', extra_text_2='Oncoming traffic in right lane') return elif self.sm_smiskol['dynamicCameraOffset'].keepingRight: self.AM.SA_add('laneSpeedKeeping', extra_text_1='RIGHT', extra_text_2='Oncoming traffic in left lane') return ls_state = self.sm_smiskol['laneSpeed'].state if ls_state != '': self.AM.SA_add('lsButtonAlert', extra_text_1=ls_state) return faster_lane = self.sm_smiskol['laneSpeed'].fastestLane if faster_lane in ['left', 'right']: ls_alert = 'laneSpeedAlert' if not self.sm_smiskol['laneSpeed'].new: ls_alert += 'Silent' self.AM.SA_add( ls_alert, extra_text_1='{} lane faster'.format(faster_lane).upper(), extra_text_2='Change lanes to faster {} lane'.format( faster_lane)) return df_out = self.df_manager.update() if df_out.changed: df_alert = 'dfButtonAlert' if df_out.is_auto and df_out.last_is_auto: # only show auto alert if engaged, not hiding auto, and time since lane speed alert not showing if CS.cruiseState.enabled and not self.op_params.get( 'hide_auto_df_alerts'): df_alert += 'Silent' self.AM.SA_add(df_alert, extra_text_1=df_out.model_profile_text + ' (auto)') return else: self.AM.SA_add( df_alert, extra_text_1=df_out.user_profile_text, extra_text_2='Dynamic follow: {} profile active'.format( df_out.user_profile_text)) return def data_sample(self): """Receive data from sockets and update carState""" # Update carState from CAN can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True) CS = self.CI.update(self.CC, can_strs) self.sm.update(0) self.sm_smiskol.update(0) # Check for CAN timeout if not can_strs: self.can_error_counter += 1 self.can_rcv_error = True else: self.can_rcv_error = False # When the panda and controlsd do not agree on controls_allowed # we want to disengage openpilot. However the status from the panda goes through # another socket other than the CAN messages and one can arrive earlier than the other. # Therefore we allow a mismatch for two samples, then we trigger the disengagement. if not self.enabled: self.mismatch_counter = 0 if not self.sm['pandaState'].controlsAllowed and self.enabled: self.mismatch_counter += 1 self.distance_traveled += CS.vEgo * DT_CTRL return CS def state_transition(self, CS): """Compute conditional state transitions and execute actions on state transitions""" self.v_cruise_kph_last = self.v_cruise_kph # if stock cruise is completely disabled, then we can use our own set speed logic if not self.CP.enableCruise: self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.buttonEvents, self.enabled) elif self.CP.enableCruise and CS.cruiseState.enabled: self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH # decrease the soft disable timer at every step, as it's reset on # entrance in SOFT_DISABLING state self.soft_disable_timer = max(0, self.soft_disable_timer - 1) self.current_alert_types = [ET.PERMANENT] # ENABLED, PRE ENABLING, SOFT DISABLING if self.state != State.disabled: # user and immediate disable always have priority in a non-disabled state if self.events.any(ET.USER_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.USER_DISABLE) elif self.events.any(ET.IMMEDIATE_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.IMMEDIATE_DISABLE) else: # ENABLED if self.state == State.enabled: if self.events.any(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = 300 # 3s self.current_alert_types.append(ET.SOFT_DISABLE) # SOFT DISABLING elif self.state == State.softDisabling: if not self.events.any(ET.SOFT_DISABLE): # no more soft disabling condition, so go back to ENABLED self.state = State.enabled elif self.events.any( ET.SOFT_DISABLE) and self.soft_disable_timer > 0: self.current_alert_types.append(ET.SOFT_DISABLE) elif self.soft_disable_timer <= 0: self.state = State.disabled # PRE ENABLING elif self.state == State.preEnabled: if not self.events.any(ET.PRE_ENABLE): self.state = State.enabled else: self.current_alert_types.append(ET.PRE_ENABLE) # DISABLED elif self.state == State.disabled: if self.events.any(ET.ENABLE): if self.events.any(ET.NO_ENTRY): self.current_alert_types.append(ET.NO_ENTRY) else: if self.events.any(ET.PRE_ENABLE): self.state = State.preEnabled else: self.state = State.enabled self.current_alert_types.append(ET.ENABLE) self.v_cruise_kph = initialize_v_cruise( CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last) # Check if actuators are enabled self.active = self.state == State.enabled or self.state == State.softDisabling if self.active: self.current_alert_types.append(ET.WARNING) # Check if openpilot is engaged self.enabled = self.active or self.state == State.preEnabled def state_control(self, CS): """Given the state, this function returns an actuators packet""" lat_plan = self.sm['lateralPlan'] long_plan = self.sm['longitudinalPlan'] actuators = car.CarControl.Actuators.new_message() if CS.leftBlinker or CS.rightBlinker: self.last_blinker_frame = self.sm.frame # State specific actions if not self.active: self.LaC.reset() self.LoC.reset(v_pid=CS.vEgo) long_plan_age = DT_CTRL * (self.sm.frame - self.sm.rcv_frame['longitudinalPlan']) # no greater than dt mpc + dt, to prevent too high extraps dt = min(long_plan_age, LON_MPC_STEP + DT_CTRL) + DT_CTRL a_acc_sol = long_plan.aStart + (dt / LON_MPC_STEP) * ( long_plan.aTarget - long_plan.aStart) v_acc_sol = long_plan.vStart + dt * (a_acc_sol + long_plan.aStart) / 2.0 extras_loc = { 'lead_one': self.sm_smiskol['radarState'].leadOne, 'mpc_TR': self.sm_smiskol['dynamicFollowData'].mpcTR, 'live_tracks': self.sm_smiskol['liveTracks'], 'has_lead': long_plan.hasLead } # Gas/Brake PID loop actuators.gas, actuators.brake = self.LoC.update( self.active, CS, v_acc_sol, long_plan.vTargetFuture, a_acc_sol, self.CP, extras_loc) # Steering PID loop and lateral MPC actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update( self.active, CS, self.CP, lat_plan) # Check for difference between desired angle and angle for angle based control angle_control_saturated = self.CP.steerControlType == car.CarParams.SteerControlType.angle and \ abs(actuators.steeringAngleDeg - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD if angle_control_saturated and not CS.steeringPressed and self.active: self.saturated_count += 1 else: self.saturated_count = 0 # Send a "steering required alert" if saturation count has reached the limit if (lac_log.saturated and not CS.steeringPressed) or \ (self.saturated_count > STEER_ANGLE_SATURATION_TIMEOUT): # Check if we deviated from the path left_deviation = actuators.steer > 0 and lat_plan.dPathPoints[ 0] < -0.1 right_deviation = actuators.steer < 0 and lat_plan.dPathPoints[ 0] > 0.1 if left_deviation or right_deviation: self.events.add(EventName.steerSaturated) return actuators, v_acc_sol, a_acc_sol, lac_log def publish_logs(self, CS, start_time, actuators, v_acc, a_acc, lac_log): """Send actuators and hud commands to the car, send controlsstate and MPC logging""" CC = car.CarControl.new_message() CC.enabled = self.enabled CC.actuators = actuators CC.cruiseControl.override = True CC.cruiseControl.cancel = not self.CP.enableCruise or ( not self.enabled and CS.cruiseState.enabled) # Some override values for Honda # brake discount removes a sharp nonlinearity brake_discount = (1.0 - clip(actuators.brake * 3., 0.0, 1.0)) speed_override = max(0.0, (self.LoC.v_pid + CS.cruiseState.speedOffset) * brake_discount) CC.cruiseControl.speedOverride = float( speed_override if self.CP.enableCruise else 0.0) CC.cruiseControl.accelOverride = self.CI.calc_accel_override( CS.aEgo, self.sm['longitudinalPlan'].aTarget, CS.vEgo, self.sm['longitudinalPlan'].vTarget) CC.hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS) CC.hudControl.speedVisible = self.enabled CC.hudControl.lanesVisible = self.enabled CC.hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead right_lane_visible = self.sm['lateralPlan'].rProb > 0.5 left_lane_visible = self.sm['lateralPlan'].lProb > 0.5 CC.hudControl.rightLaneVisible = bool(right_lane_visible) CC.hudControl.leftLaneVisible = bool(left_lane_visible) recent_blinker = (self.sm.frame - self.last_blinker_frame ) * DT_CTRL < 5.0 # 5s blinker cooldown ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \ and (not self.active or CS.epsDisabled == True) and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED meta = self.sm['modelV2'].meta if len(meta.desirePrediction) and ldw_allowed: l_lane_change_prob = meta.desirePrediction[Desire.laneChangeLeft - 1] r_lane_change_prob = meta.desirePrediction[Desire.laneChangeRight - 1] CAMERA_OFFSET = self.sm['lateralPlan'].cameraOffset ldw_average_car_width = 1.750483672001016 # from sedans, suvs, and minivans (todo: find from all openpilot Toyotas instead) ldw_m_from_wheel = 0.15 ldw_threshold = ldw_average_car_width / 2 + ldw_m_from_wheel l_lane_close = left_lane_visible and ( self.sm['modelV2'].laneLines[1].y[0] > -(ldw_threshold + CAMERA_OFFSET)) r_lane_close = right_lane_visible and ( self.sm['modelV2'].laneLines[2].y[0] < (ldw_threshold - CAMERA_OFFSET)) CC.hudControl.leftLaneDepart = bool( l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) CC.hudControl.rightLaneDepart = bool( r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart: self.events.add(EventName.ldw) clear_event = ET.WARNING if ET.WARNING not in self.current_alert_types else None alerts = self.events.create_alerts(self.current_alert_types, [self.CP, self.sm, self.is_metric]) self.AM.add_many(self.sm.frame, alerts, self.enabled) self.last_model_long = self.sm_smiskol['modelLongButton'].enabled self.AM.process_alerts(self.sm.frame, clear_event) CC.hudControl.visualAlert = self.AM.visual_alert if not self.read_only: # send car controls over can can_sends = self.CI.apply(CC) self.pm.send( 'sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid)) force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \ (self.state == State.softDisabling) steer_angle_rad = ( CS.steeringAngleDeg - self.sm['lateralPlan'].angleOffsetDeg) * CV.DEG_TO_RAD # controlsState dat = messaging.new_message('controlsState') dat.valid = CS.canValid controlsState = dat.controlsState controlsState.alertText1 = self.AM.alert_text_1 controlsState.alertText2 = self.AM.alert_text_2 controlsState.alertSize = self.AM.alert_size controlsState.alertStatus = self.AM.alert_status controlsState.alertBlinkingRate = self.AM.alert_rate controlsState.alertType = self.AM.alert_type controlsState.alertSound = self.AM.audible_alert controlsState.canMonoTimes = list(CS.canMonoTimes) controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime[ 'longitudinalPlan'] controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan'] controlsState.enabled = self.enabled controlsState.active = self.active controlsState.curvature = self.VM.calc_curvature( steer_angle_rad, CS.vEgo) controlsState.state = self.state controlsState.engageable = not self.events.any(ET.NO_ENTRY) controlsState.longControlState = self.LoC.long_control_state controlsState.vPid = float(self.LoC.v_pid) controlsState.vCruise = float(self.v_cruise_kph) controlsState.upAccelCmd = float(self.LoC.pid.p) controlsState.uiAccelCmd = float(self.LoC.pid.id) controlsState.ufAccelCmd = float(self.LoC.pid.f) controlsState.steeringAngleDesiredDeg = float( self.LaC.angle_steers_des) controlsState.vTargetLead = float(v_acc) controlsState.aTarget = float(a_acc) controlsState.cumLagMs = -self.rk.remaining * 1000. controlsState.startMonoTime = int(start_time * 1e9) controlsState.forceDecel = bool(force_decel) controlsState.canErrorCounter = self.can_error_counter if self.CP.lateralTuning.which() == 'pid': controlsState.lateralControlState.pidState = lac_log elif self.CP.lateralTuning.which() == 'lqr': controlsState.lateralControlState.lqrState = lac_log elif self.CP.lateralTuning.which() == 'indi': controlsState.lateralControlState.indiState = lac_log self.pm.send('controlsState', dat) # carState car_events = self.events.to_msg() cs_send = messaging.new_message('carState') cs_send.valid = CS.canValid cs_send.carState = CS cs_send.carState.events = car_events self.pm.send('carState', cs_send) # carEvents - logged every second or on change if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev): ce_send = messaging.new_message('carEvents', len(self.events)) ce_send.carEvents = car_events self.pm.send('carEvents', ce_send) self.events_prev = self.events.names.copy() # carParams - logged every 50 seconds (> 1 per segment) if (self.sm.frame % int(50. / DT_CTRL) == 0): cp_send = messaging.new_message('carParams') cp_send.carParams = self.CP self.pm.send('carParams', cp_send) # carControl cc_send = messaging.new_message('carControl') cc_send.valid = CS.canValid cc_send.carControl = CC self.pm.send('carControl', cc_send) # copy CarControl to pass to CarInterface on the next iteration self.CC = CC def step(self): start_time = sec_since_boot() self.prof.checkpoint("Ratekeeper", ignore=True) # Sample data from sockets and get a carState CS = self.data_sample() self.prof.checkpoint("Sample") self.update_events(CS) if not self.read_only: # Update control state self.state_transition(CS) self.prof.checkpoint("State transition") # Compute actuators (runs PID loops and lateral MPC) actuators, v_acc, a_acc, lac_log = self.state_control(CS) self.prof.checkpoint("State Control") # Publish data self.publish_logs(CS, start_time, actuators, v_acc, a_acc, lac_log) self.prof.checkpoint("Sent") def controlsd_thread(self): while True: self.step() self.rk.monitor_time() self.prof.display()