Exemple #1
0
 def reset(self):
   self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
   self.v_solution = np.zeros(N+1)
   self.a_solution = np.zeros(N+1)
   self.prev_a = np.array(self.a_solution)
   self.j_solution = np.zeros(N)
   self.yref = np.zeros((N+1, COST_DIM))
   for i in range(N):
     self.solver.cost_set(i, "yref", self.yref[i])
   self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
   self.x_sol = np.zeros((N+1, X_DIM))
   self.u_sol = np.zeros((N,1))
   self.params = np.zeros((N+1, PARAM_DIM))
   for i in range(N+1):
     self.solver.set(i, 'x', np.zeros(X_DIM))
   self.last_cloudlog_t = 0
   self.status = False
   self.crash_cnt = 0.0
   self.solution_status = 0
   # timers
   self.solve_time = 0.0
   self.time_qp_solution = 0.0
   self.time_linearization = 0.0
   self.time_integrator = 0.0
   self.x0 = np.zeros(X_DIM)
   self.set_weights()
Exemple #2
0
 def __init__(self, e2e=False):
     self.e2e = e2e
     self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
     self.reset()
     self.source = SOURCES[2]
Exemple #3
0
class LongitudinalMpc:
    def __init__(self, e2e=False):
        self.e2e = e2e
        self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
        self.reset()
        self.source = SOURCES[2]

    def reset(self):
        # self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
        self.solver.reset()
        # self.solver.options_set('print_level', 2)
        self.v_solution = np.zeros(N + 1)
        self.a_solution = np.zeros(N + 1)
        self.prev_a = np.array(self.a_solution)
        self.j_solution = np.zeros(N)
        self.yref = np.zeros((N + 1, COST_DIM))
        for i in range(N):
            self.solver.cost_set(i, "yref", self.yref[i])
        self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
        self.x_sol = np.zeros((N + 1, X_DIM))
        self.u_sol = np.zeros((N, 1))
        self.params = np.zeros((N + 1, PARAM_DIM))
        for i in range(N + 1):
            self.solver.set(i, 'x', np.zeros(X_DIM))
        self.last_cloudlog_t = 0
        self.status = False
        self.crash_cnt = 0.0
        self.solution_status = 0
        # timers
        self.solve_time = 0.0
        self.time_qp_solution = 0.0
        self.time_linearization = 0.0
        self.time_integrator = 0.0
        self.x0 = np.zeros(X_DIM)
        self.set_weights()

    def set_weights(self, prev_accel_constraint=True):
        if self.e2e:
            self.set_weights_for_xva_policy()
            self.params[:, 0] = -10.
            self.params[:, 1] = 10.
            self.params[:, 2] = 1e5
        else:
            self.set_weights_for_lead_policy(prev_accel_constraint)

    def set_weights_for_lead_policy(self, prev_accel_constraint=True):
        a_change_cost = A_CHANGE_COST if prev_accel_constraint else 0
        W = np.asfortranarray(
            np.diag([
                X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST,
                a_change_cost, J_EGO_COST
            ]))
        for i in range(N):
            # reduce the cost on (a-a_prev) later in the horizon.
            W[4, 4] = a_change_cost * np.interp(T_IDXS[i], [0.0, 1.0, 2.0],
                                                [1.0, 1.0, 0.0])
            self.solver.cost_set(i, 'W', W)
        # Setting the slice without the copy make the array not contiguous,
        # causing issues with the C interface.
        self.solver.cost_set(N, 'W', np.copy(W[:COST_E_DIM, :COST_E_DIM]))

        # Set L2 slack cost on lower bound constraints
        Zl = np.array([LIMIT_COST, LIMIT_COST, LIMIT_COST, DANGER_ZONE_COST])
        for i in range(N):
            self.solver.cost_set(i, 'Zl', Zl)

    def set_weights_for_xva_policy(self):
        W = np.asfortranarray(np.diag([0., 10., 1., 10., 0.0, 1.]))
        for i in range(N):
            self.solver.cost_set(i, 'W', W)
        # Setting the slice without the copy make the array not contiguous,
        # causing issues with the C interface.
        self.solver.cost_set(N, 'W', np.copy(W[:COST_E_DIM, :COST_E_DIM]))

        # Set L2 slack cost on lower bound constraints
        Zl = np.array([LIMIT_COST, LIMIT_COST, LIMIT_COST, 0.0])
        for i in range(N):
            self.solver.cost_set(i, 'Zl', Zl)

    def set_cur_state(self, v, a):
        v_prev = self.x0[1]
        self.x0[1] = v
        self.x0[2] = a
        if abs(v_prev - v) > 2.:  # probably only helps if v < v_prev
            for i in range(0, N + 1):
                self.solver.set(i, 'x', self.x0)

    @staticmethod
    def extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau):
        a_lead_traj = a_lead * np.exp(-a_lead_tau * (T_IDXS**2) / 2.)
        v_lead_traj = np.clip(v_lead + np.cumsum(T_DIFFS * a_lead_traj), 0.0,
                              1e8)
        x_lead_traj = x_lead + np.cumsum(T_DIFFS * v_lead_traj)
        lead_xv = np.column_stack((x_lead_traj, v_lead_traj))
        return lead_xv

    def process_lead(self, lead):
        v_ego = self.x0[1]
        if lead is not None and lead.status:
            x_lead = lead.dRel
            v_lead = lead.vLead
            a_lead = lead.aLeadK
            a_lead_tau = lead.aLeadTau
        else:
            # Fake a fast lead car, so mpc can keep running in the same mode
            x_lead = 50.0
            v_lead = v_ego + 10.0
            a_lead = 0.0
            a_lead_tau = _LEAD_ACCEL_TAU

        # MPC will not converge if immediate crash is expected
        # Clip lead distance to what is still possible to brake for
        min_x_lead = (
            (v_ego + v_lead) / 2) * (v_ego - v_lead) / (-MIN_ACCEL * 2)
        x_lead = clip(x_lead, min_x_lead, 1e8)
        v_lead = clip(v_lead, 0.0, 1e8)
        a_lead = clip(a_lead, -10., 5.)
        lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau)
        return lead_xv

    def set_accel_limits(self, min_a, max_a):
        self.cruise_min_a = min_a
        self.cruise_max_a = max_a

    def update(self, carstate, radarstate, v_cruise):
        v_ego = self.x0[1]
        self.status = radarstate.leadOne.status or radarstate.leadTwo.status

        lead_xv_0 = self.process_lead(radarstate.leadOne)
        lead_xv_1 = self.process_lead(radarstate.leadTwo)

        # set accel limits in params
        self.params[:, 0] = interp(float(self.status), [0.0, 1.0],
                                   [self.cruise_min_a, MIN_ACCEL])
        self.params[:, 1] = self.cruise_max_a

        # To estimate a safe distance from a moving lead, we calculate how much stopping
        # distance that lead needs as a minimum. We can add that to the current distance
        # and then treat that as a stopped car/obstacle at this new distance.
        lead_0_obstacle = lead_xv_0[:, 0] + get_stopped_equivalence_factor(
            lead_xv_0[:, 1])
        lead_1_obstacle = lead_xv_1[:, 0] + get_stopped_equivalence_factor(
            lead_xv_1[:, 1])

        # Fake an obstacle for cruise, this ensures smooth acceleration to set speed
        # when the leads are no factor.
        v_lower = v_ego + (T_IDXS * self.cruise_min_a * 1.05)
        v_upper = v_ego + (T_IDXS * self.cruise_max_a * 1.05)
        v_cruise_clipped = np.clip(v_cruise * np.ones(N + 1), v_lower, v_upper)
        cruise_obstacle = np.cumsum(
            T_DIFFS *
            v_cruise_clipped) + get_safe_obstacle_distance(v_cruise_clipped)

        x_obstacles = np.column_stack(
            [lead_0_obstacle, lead_1_obstacle, cruise_obstacle])
        self.source = SOURCES[np.argmin(x_obstacles[0])]
        self.params[:, 2] = np.min(x_obstacles, axis=1)
        self.params[:, 3] = np.copy(self.prev_a)

        self.run()
        if (np.any(lead_xv_0[:, 0] - self.x_sol[:, 0] < CRASH_DISTANCE)
                and radarstate.leadOne.modelProb > 0.9):
            self.crash_cnt += 1
        else:
            self.crash_cnt = 0

    def update_with_xva(self, x, v, a):
        # v, and a are in local frame, but x is wrt the x[0] position
        # In >90degree turns, x goes to 0 (and may even be -ve)
        # So, we use integral(v) + x[0] to obtain the forward-distance
        xforward = ((v[1:] + v[:-1]) / 2) * (T_IDXS[1:] - T_IDXS[:-1])
        x = np.cumsum(np.insert(xforward, 0, x[0]))
        self.yref[:, 1] = x
        self.yref[:, 2] = v
        self.yref[:, 3] = a
        for i in range(N):
            self.solver.cost_set(i, "yref", self.yref[i])
        self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
        self.params[:, 3] = np.copy(self.prev_a)
        self.run()

    def run(self):
        # t0 = sec_since_boot()
        # reset = 0
        for i in range(N + 1):
            self.solver.set(i, 'p', self.params[i])
        self.solver.constraints_set(0, "lbx", self.x0)
        self.solver.constraints_set(0, "ubx", self.x0)

        self.solution_status = self.solver.solve()
        self.solve_time = float(self.solver.get_stats('time_tot')[0])
        self.time_qp_solution = float(self.solver.get_stats('time_qp')[0])
        self.time_linearization = float(self.solver.get_stats('time_lin')[0])
        self.time_integrator = float(self.solver.get_stats('time_sim')[0])

        # qp_iter = self.solver.get_stats('statistics')[-1][-1] # SQP_RTI specific
        # print(f"long_mpc timings: tot {self.solve_time:.2e}, qp {self.time_qp_solution:.2e}, lin {self.time_linearization:.2e}, integrator {self.time_integrator:.2e}, qp_iter {qp_iter}")
        # res = self.solver.get_residuals()
        # print(f"long_mpc residuals: {res[0]:.2e}, {res[1]:.2e}, {res[2]:.2e}, {res[3]:.2e}")
        # self.solver.print_statistics()

        for i in range(N + 1):
            self.x_sol[i] = self.solver.get(i, 'x')
        for i in range(N):
            self.u_sol[i] = self.solver.get(i, 'u')

        self.v_solution = self.x_sol[:, 1]
        self.a_solution = self.x_sol[:, 2]
        self.j_solution = self.u_sol[:, 0]

        self.prev_a = np.interp(T_IDXS + 0.05, T_IDXS, self.a_solution)

        t = sec_since_boot()
        if self.solution_status != 0:
            if t > self.last_cloudlog_t + 5.0:
                self.last_cloudlog_t = t
                cloudlog.warning(
                    f"Long mpc reset, solution_status: {self.solution_status}")
            self.reset()