cluster_point = 6 for hidden_num in range(64, 320, 32): for magweight in range(6, 20, 2): magweight = magweight / 10. # drop_pro = float(drop)/10. net_size = [chardim, hidden_num * 2, hidden_num, len(tags)] #net_size = [chardim, hidden_num*2, hidden_num,len(tags)] print "model initialization ............network size " + str( net_size) model = semimodel(len(tags), em_num, net_size, magweight, sam_cnum, layerid, hinge, lrate=0.02, opt="adaGrad", embeddic={"dic_1": embedding}) print "model training preparing.........................." model.train_ready(True, 'joint-train') model.evaluate_ready() print "model training ready ............................." epoch = 1 modelstr = storedir + "/hid_" + str(hidden_num) + "_magweight_" + str( magweight) if os.path.exists(modelstr): shutil.rmtree(modelstr) os.mkdir(modelstr) #os.mknod(modelstr+"/trainscore")
#list1 = range(100,110,10)#tune #list2 = [0]*len(list1)#tune #list1 = [100]*10 #list2 = range(5,55,5) #for hidden_num, semiweight in zip(list1,list2): list1 = [120] list2 = [90] for hidden_num1, hidden_num2 in zip(list1,list2): semiweight = 0 #semiweight = semiweight/10. #net_size = [dim, hidden_num1*2, len(tags)] net_size = [dim, hidden_num1*2,hidden_num2*2, len(tags)] print "model initialization ..............network size "+str(net_size) model = semimodel(len(tags),em_num, net_size,dropout = dropout_pro, lrate=0.1, wdecay = 0.0, opt = "adaGrad",fix_emb = True, embeddic = embeddic, premodel = loadedmodel) print "model training preparing.........................." model.train_ready() model.evaluate_ready() print "model training ready ............................." modelstr = storedir+"/hid1_"+str(hidden_num1)+"_hid2_"+str(hidden_num2) if os.path.exists(modelstr): shutil.rmtree(modelstr) os.mkdir(modelstr) os.mknod(modelstr+"/trainscore") os.mknod(modelstr+"/devscore") print "start fine-tuning .........."
print "model initialization ..............model type " + str(mtype) print "model initialization ..............network size " + str(net_size) print "model initialization .............pre-training epoch " + str( pretime) #model = semimodel(len(tags),em_num, net_size,typenum = labelnum, model_type = mtype, wordnum = wordnum, LMweight = LMweight, padding_id = outpadding_id,layerid = layerid, #dropout = dropout_pro, lrate=0.03, wdecay = 0., opt = "adaGrad",fix_emb = False, embeddic = {"dic_1": embedding}) model = semimodel(len(tags), em_num, net_size, typenum=labelnum, model_type=mtype, wordnum=wordnum, LMweight=LMweight, padding_id=outpadding_id, layerid=layerid, dropout=dropout_pro, lrate=0.02, wdecay=0., opt="adaGrad", fix_emb=False, embeddic=embeddic, premodel=premodel) print "model training preparing.........................." model.train_ready() model.evaluate_ready() model.unsup_evaluate_ready() print "model training ready ............................." modelstr = storedir + "/hid1_" + str(hidden_num1) + "_hid2_" + str( hidden_num2)