def __init__(self, network, settings): self._settings = settings self._input_shape = get_image_shape(network) if self._settings.rescale_type is None: net_meta = network["metadata"] self._settings.rescale_type = net_meta.get("rescale_type", WARP)
def reader_for_network(network_name, additional_settings): extras = dict(EXTRA_PARAMS) if additional_settings: extras.update(additional_settings) image_shape = get_image_shape(get_pretrained_network(network_name)) return make_image_reader(Settings(extras), image_shape, False)
def reader_for_network(network_name, additional_settings): extras = dict(EXTRA_PARAMS) if additional_settings: extras.update(additional_settings) settings = Settings(extras) image_shape = get_image_shape(get_pretrained_network(network_name)) return make_image_reader("file", image_shape, TEST_IMAGE_DATA, settings)
def __init__(self, network, nclasses): self._nclasses = nclasses self._input_size = get_image_shape(network)[1] self._layers = network["layers"] self._branches = [] for branch in yolo_outputs(network): d_info = [branch[k] for k in ["strides", "anchors", "xyscale"]] self._branches.append((branch["input"], d_info))
def __init__(self, network, nclasses, settings): self._nclasses = nclasses self._input_shape = get_image_shape(network)[1:3] ob = yolo_outputs(network) self._strides = tuple( [self._input_shape[0] // b["strides"] for b in ob]) self._nanchors = tuple([len(b["anchors"]) for b in ob]) self._unfiltered = settings.output_unfiltered_boxes self._threshold = settings.bounding_box_threshold or SCORE_THRESHOLD self._iou_threshold = settings.iou_threshold or IOU_THRESHOLD self._max_objects = settings.max_objects or MAX_OBJECTS
def __init__(self, network, nclasses): super(YoloBranches, self).__init__() self._nclasses = nclasses self._input_size = get_image_shape(network)[1] self._branches = [] assert network['layers'][-1]['type'] == 'yolo_output_branches' out_branches = network['layers'][-1] for i, branch in enumerate(out_branches['output_branches']): idx = branch['input'] d_info = [branch[k] for k in ['strides', 'anchors', 'xyscale']] layers = make_sequence(branch['convolution_path'], LAYER_FUNCTIONS) self._branches.append((idx, d_info, layers))
def __init__(self, network, nclasses, settings): super(BoxLocator, self).__init__() assert network['layers'][-1]['type'] == 'yolo_output_branches' self._nclasses = nclasses self._input_shape = get_image_shape(network)[1:3] ob = network['layers'][-1]['output_branches'] self._strides = tuple( [self._input_shape[0] // b['strides'] for b in ob]) self._nanchors = tuple([len(b['anchors']) for b in ob]) self._unfiltered = settings.output_unfiltered_boxes self._threshold = settings.bounding_box_threshold or SCORE_THRESHOLD self._iou_threshold = settings.iou_threshold or IOU_THRESHOLD self._max_objects = settings.max_objects or MAX_OBJECTS
def __init__(self, network, settings): super(ImageReader, self).__init__() self._input_shape = get_image_shape(network) self._settings = settings