Exemple #1
0
    def pretrained_model_score(self, model_name, expected_score):
        model = SentenceTransformer(model_name)
        sts_reader = STSDataReader('../examples/datasets/stsbenchmark')

        test_data = SentencesDataset(
            examples=sts_reader.get_examples("sts-test.csv"), model=model)
        test_dataloader = DataLoader(test_data, shuffle=False, batch_size=8)
        evaluator = EmbeddingSimilarityEvaluator(test_dataloader)

        score = model.evaluate(evaluator) * 100
        print(model_name,
              "{:.2f} vs. exp: {:.2f}".format(score, expected_score))
        assert abs(score - expected_score) < 0.1
def main():
    model = SentenceTransformer('bert-base-nli-mean-tokens')

    sts_reader = STSDataReader('datasets/stsbenchmark')

    test_data = SentencesDataset(
        examples=sts_reader.get_examples('sts-test.csv'),
        model=model,
        dataset_cache_id='sts-eval')
    test_dataloader = DataLoader(test_data, shuffle=False, batch_size=16)
    evaluator = EmbeddingSimilarityEvaluator(test_dataloader)

    model.evaluate(evaluator)
def nlptrain(premodel,ver,tr_data,te_data):
	
#### Just some code to print debug information to stdout
	logging.basicConfig(format='%(asctime)s - %(message)s',
                    	datefmt='%Y-%m-%d %H:%M:%S',
                    	level=logging.INFO,
                    	handlers=[LoggingHandler()])
#### /print debug information to stdout

# Read the dataset
	model_name = 'roberta-large-nli-stsb-mean-tokens'
	train_batch_size = 16
	num_epochs = 4
	model_save_path = ver
	sts_reader = STSDataReader('kt_datasets/kt_benchmark', normalize_scores=True)

# Load a pre-trained sentence transformer model
	model = SentenceTransformer(premodel)

# Convert the dataset to a DataLoader ready for training
	logging.info("")
	train_data = SentencesDataset(sts_reader.get_examples(tr_data), model)
	train_dataloader = DataLoader(train_data, shuffle=True, batch_size=train_batch_size)
	train_loss = losses.CosineSimilarityLoss(model=model)


	logging.info("")
	dev_data = SentencesDataset(examples=sts_reader.get_examples(te_data), model=model)
	dev_dataloader = DataLoader(dev_data, shuffle=False, batch_size=train_batch_size)
	evaluator = EmbeddingSimilarityEvaluator(dev_dataloader)


# Configure the training. We skip evaluation in this example
	warmup_steps = math.ceil(len(train_data)*num_epochs/train_batch_size*0.1) #10% of train data for warm-up
	logging.info("Warmup-steps: {}".format(warmup_steps))


# Train the model
	model.fit(train_objectives=[(train_dataloader, train_loss)],
          	evaluator=evaluator,
          	epochs=num_epochs,
          	evaluation_steps=1000,
         	warmup_steps=warmup_steps,
          	output_path=model_save_path)

	list=['model saved in '+ ver+' directory']

	return(list)
import logging
from datetime import datetime

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

# Read the dataset
train_batch_size = 16
num_epochs = 4
model_save_path = 'output/training_stsbenchmark_roberta-' + datetime.now(
).strftime("%Y-%m-%d_%H-%M-%S")
sts_reader = STSDataReader('datasets/stsbenchmark', normalize_scores=True)

# Use XLNet for mapping tokens to embeddings
word_embedding_model = models.RoBERTa('roberta-base')

# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(
    word_embedding_model.get_word_embedding_dimension(),
    pooling_mode_mean_tokens=True,
    pooling_mode_cls_token=False,
    pooling_mode_max_tokens=False)

model = SentenceTransformer(modules=[word_embedding_model, pooling_model])

# Convert the dataset to a DataLoader ready for training
logging.info("Read STSbenchmark train dataset")
Exemple #5
0
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

# Read the dataset
#model_name = 'bert-base-nli-stsb-mean-tokens'
model_name = "../saved_models"
train_batch_size = 32
num_epochs = 4
model_save_path = 'output/quora_continue_training-' + model_name + '-' + datetime.now(
).strftime("%Y-%m-%d_%H-%M-%S")
sts_reader = STSDataReader('../data/quora',
                           normalize_scores=True,
                           s1_col_idx=4,
                           s2_col_idx=5,
                           score_col_idx=6,
                           max_score=1)

# Load a pre-trained sentence transformer model
model = SentenceTransformer(model_name)

# Convert the dataset to a DataLoader ready for training
logging.info("Read Quora train dataset")
train_data = SentencesDataset(sts_reader.get_examples('train.csv'), model)
train_dataloader = DataLoader(train_data,
                              shuffle=True,
                              batch_size=train_batch_size)
train_loss = losses.CosineSimilarityLoss(model=model)

logging.info("Read Quora dev dataset")
Exemple #6
0
from datetime import datetime

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

# Read the dataset
model_name = 'roberta-large-nli-stsb-mean-tokens'
train_batch_size = 16
num_epochs = 4
model_save_path = 'output/train1-' + model_name + '-' + datetime.now(
).strftime("%Y-%m-%d_%H-%M-%S")
sts_reader = STSDataReader('kt_datasets/kt_benchmark', normalize_scores=True)

# Load a pre-trained sentence transformer model
model = SentenceTransformer('output/retkt')

# Convert the dataset to a DataLoader ready for training
logging.info("")
train_data = SentencesDataset(sts_reader.get_examples('kt1.csv'), model)
train_dataloader = DataLoader(train_data,
                              shuffle=True,
                              batch_size=train_batch_size)
train_loss = losses.CosineSimilarityLoss(model=model)

logging.info("")
dev_data = SentencesDataset(examples=sts_reader.get_examples('kt1.csv'),
                            model=model)
Exemple #7
0
import os

dirname = os.path.dirname(os.path.dirname(__file__))

#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

# Read the dataset
train_batch_size = 16
num_epochs = 4
model_save_path = os.path.join(dirname, 'output/training_stsbenchmark_bert-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
sts_reader = STSDataReader(os.path.join(dirname, 'data/sts-b'), normalize_scores=True)

# Use BERT for mapping tokens to embeddings
word_embedding_model = models.BERT('bert-base-uncased')

# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
                               pooling_mode_mean_tokens=True,
                               pooling_mode_cls_token=False,
                               pooling_mode_max_tokens=False)

model = SentenceTransformer(modules=[word_embedding_model, pooling_model])

# Convert the dataset to a DataLoader ready for training
logging.info("Read STSbenchmark train dataset")
train_data = SentencesDataset(sts_reader.get_examples('sts-train.csv'), model)
from sentence_transformers import SentencesDataset, SentenceTransformer, losses
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import STSDataReader
from torch.utils.data import DataLoader

# model = SentenceTransformer('bert-base-nli-mean-tokens')
sts_reader = STSDataReader('stsbenchmark_data', normalize_scores=True)
train_data = SentencesDataset(sts_reader.get_examples('sts-train.csv'), model)
train_dataloader = DataLoader(train_data,
                              shuffle=True,
                              batch_size=train_batch_size)
train_loss = losses.CosineSimilarityLoss(model=model)

print(train_data)
This examples loads a pre-trained model and evaluates it on the STSbenchmark dataset
"""
from torch.utils.data import DataLoader
from sentence_transformers import SentenceTransformer, SentencesDataset, LoggingHandler
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import STSDataReader
import numpy as np
import logging

#### Just some code to print debug information to stdout
np.set_printoptions(threshold=100)

logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout

# Load a named sentence model (based on BERT). This will download the model from our server.
# Alternatively, you can also pass a filepath to SentenceTransformer()
model = SentenceTransformer('bert-base-nli-mean-tokens')

sts_reader = STSDataReader('datasets/stsbenchmark')

test_data = SentencesDataset(examples=sts_reader.get_examples("sts-test.csv"),
                             model=model)
test_dataloader = DataLoader(test_data, shuffle=False, batch_size=8)
evaluator = EmbeddingSimilarityEvaluator(test_dataloader)

model.evaluate(evaluator)