def benchmark(nb_crypto):

    liste_polarity = []
    liste_average_senti = []
    liste_crypto = get_ordonate_crypto_list()
    print(liste_crypto[:nb_crypto])

    for crypto in liste_crypto[:nb_crypto]:
        loc_file = tws.get_tweet_from_subject(10, "en", crypto, 20, 20, 20)
        print(loc_file)
        df = pd.read_csv("data/" + loc_file, sep="\\", names=['Content'])
        clean = nlp.clean_df(df)
        tweet_list = sent_analy.get_sentence_from_array(clean)
        liste_average_senti.append(
            sent_analy.get_sentiment_analyse(tweet_list, schema=False))
        liste_polarity.append(get_signe(liste_average_senti[-1]))

    list_norm_average_senti = normalize(liste_average_senti)
    print_benchmark(list_norm_average_senti, liste_polarity)

    fig = plt.figure(figsize=(nb_crypto, 5))
    ax = fig.add_axes([0, 0, 1, 1])
    ax.set_title('Bilan analyse sentimental pour ' + str(nb_crypto) +
                 " Crypto")
    ax.set_ylabel('Scores (Achat si sup à zéro Vente si inf)')
    crypto_sentiment = print_benchmark(list_norm_average_senti, liste_polarity)
    labels = liste_crypto[:nb_crypto]
    ax.bar(labels, crypto_sentiment)
    plt.show()
Exemple #2
0
def main():
    
    loc_file = tws.get_tweet_from_subject(10,"en","bitcoin",20,20,20)
    print("\n Nom du fichier :",loc_file,"\n")
    df = pd.read_csv("data/" +loc_file, sep="\\", names=['Content'])
    clean = nlp.clean_df(df)
    tweet_list = sent_analy.get_sentence_from_array(clean)
    sent_analy.get_sentiment_analyse(tweet_list)
    
    ## Benchmark crypto
    cryp_ben.benchmark(nb_crypto=5)
Exemple #3
0
# -*- coding: utf-8 -*-
"""
Created on Fri Dec  4 11:45:05 2020

@author: Victor HENRIO
"""

import nlp
import tweet_scraping_scroll as tws
import sentiment_analysis as sent_analy
import pandas as pd

if __name__ == "__main__":
    loc_file = tws.get_tweet_from_subject(10, "en", "bitcoin", 20, 20, 20)
    print(loc_file)
    df = pd.read_csv("data/" + loc_file, sep="\\", names=['Content'])
    clean = nlp.clean_df(df)
    tweet_list = sent_analy.get_sentence_from_array(clean)
    sent_analy.get_sentiment_analyse(tweet_list)