Exemple #1
0
 def _test_multi_bleu(self, hypotheses, references, lowercase,
                      expected_bleu):
     #pylint: disable=R0201
     """Runs a multi-bleu test."""
     result = bleu.moses_multi_bleu(hypotheses=hypotheses,
                                    references=references,
                                    lowercase=lowercase)
     np.testing.assert_almost_equal(result, expected_bleu, decimal=2)
Exemple #2
0
 def metric_fn(self, hypotheses, references):
     return bleu.moses_multi_bleu(hypotheses, references, lowercase=False)
 def metric_fn(self, hypotheses, references):
   return bleu.moses_multi_bleu(hypotheses, references, lowercase=False)
Exemple #4
0
 def metric_fn(self, hypotheses, references):
   score = bleu.moses_multi_bleu(hypotheses, references, lowercase=False)
   print ("Done calculating BLEU " + str(score))
   return score
 def _test_multi_bleu(self, hypotheses, references, lowercase, expected_bleu):
   #pylint: disable=R0201
   """Runs a multi-bleu test."""
   result = bleu.moses_multi_bleu(
       hypotheses=hypotheses, references=references, lowercase=lowercase)
   np.testing.assert_almost_equal(result, expected_bleu, decimal=2)
Exemple #6
0
 def metric_fn(self, hypotheses, references):
     print("hypotheses={}, references={}".format(hypotheses, references))
     return bleu.moses_multi_bleu(hypotheses, references, lowercase=False)
    def train(self, X, Y, batch_size, no_of_epochs, checkpoint_factor, model_save_path, model_name, mem_fraction=0.5):
        '''
            The training_function for the model.
        '''
        # Setup a tensorboard_writer:
        tensorboard_writer = self.__get_tensorboard_writer(model_save_path)

        # setup the data for training:
        # obtain the padded training data:
        train_X_field = X[0]; train_X_content = X[1]
        train_Y = Y; no_of_total_examples = len(train_X_field)

        # print len(train_X_field), len(train_X_content), len(train_Y)
        assert len(train_X_field) == len(train_X_content) and len(train_X_field) == len(train_Y), "input data lengths incompatible"

        ''' Start the actual Training loop: '''
        print("\n\nStarting the Training ... ")

        # use the given memory usage fraction for this training process
        tensor_config = tf.ConfigProto()
        tensor_config.gpu_options.allow_growth = False
        tensor_config.gpu_options.per_process_gpu_memory_fraction = mem_fraction

        print("tensorflow configuration user:"******"gpu memory fraction used:", mem_fraction)

        with tf.Session(config=tensor_config, graph=self.graph) as sess:
            # create a saver object:
            saver = tf.train.Saver(max_to_keep=3)

            # create the checkpoint file:
            checkpoint_file = os.path.join(model_save_path, "checkpoint")

            # If old weights found, restart the training from there:
            if(os.path.isfile(checkpoint_file)):
                # load the saved weights:
                saver.restore(sess, tf.train.latest_checkpoint(model_save_path))

                # load the global_step value from the checkpoint file
                with open(checkpoint_file, 'r') as checkpoint:
                    path = checkpoint.readline().strip()
                    global_step = int((path.split(':')[1]).split('-')[1][:-1])


            # otherwise initialize all the weights
            else:
                global_step = 0
                sess.run(self.init)


            # print("uninitialized variables:")
            # print(sess.run(tf.report_uninitialized_variables()))

            # run a loop for no_of_epochs iterations:
            for epoch in range(no_of_epochs):
                print("------------------------------------------------------------------------------------------------------------")
                print("current_epoch: ", (epoch + 1))

                # Iterate over the batches of the given train data:
                for batch_no in range(int(np.ceil(float(no_of_total_examples) / batch_size))):
                    # obtain the current batch of data:
                    start = (batch_no * batch_size); end = start + batch_size
                    batch_inp_field = train_X_field[start: end]
                    batch_inp_conte = train_X_content[start: end]
                    batch_inp_label = train_Y[start: end]
                    # pad the current batch of data:
                    inp_field = pad_sequences(batch_inp_field)
                    inp_conte = pad_sequences(batch_inp_conte)
                    inp_label = pad_sequences(batch_inp_label)
                    # extract the sequence lengths of examples in this batch
                    inp_lengths = get_lengths(batch_inp_field)
                    lab_lengths = get_lengths(batch_inp_label)


                    # execute the cost and the train_step
                    _, cost = sess.run([self.train_step, self.loss], feed_dict = {
                        self.inp_field_encodings: inp_field,
                        self.inp_content_encodings: inp_conte,
                        self.inp_label_encodings: inp_label,
                        self.inp_sequence_lengths: inp_lengths,
                        self.lab_sequence_lengths: lab_lengths
                    })
                    print("Range: ", "[", start, "-", (start + len(inp_field)), "]", " Cost: ", cost)

                    if((global_step + 1) % checkpoint_factor == 0 or global_step == 0):
                        # generate the summary for this batch:
                        sums, predicts = sess.run([self.all_summaries, self.outputs], feed_dict = {
                            self.inp_field_encodings: inp_field,
                            self.inp_content_encodings: inp_conte,
                            self.inp_label_encodings: inp_label,
                            self.inp_sequence_lengths: inp_lengths,
                            self.lab_sequence_lengths: lab_lengths
                        })

                        # save this generated summary to the summary file
                        tensorboard_writer.add_summary(sums, global_step=global_step)

                        # also save the model
                        saver.save(sess, os.path.join(model_save_path, model_name), global_step=global_step)

                        # print a random sample from this batch:
                        random_index = np.random.randint(len(inp_field))

                        random_label_sample = inp_label[random_index]
                        random_predicts_sample = np.argmax(predicts, axis = -1)[random_index]

                        hypotheses = reduce(lambda x,y: x + " " + y,
                                                      [self.content_label_vocabulary[label] for label in random_predicts_sample])
                        references = reduce(lambda x,y: x + " " + y,
                                                      [self.content_label_vocabulary[label] for label in random_label_sample])

                        # print the extracted sample in meaningful format
                        print("\nOriginal Summary: ")
                        print(references)

                        print("\nPredicted Summary: ")
                        print(hypotheses)

                        # calculate the Bleu score
                        print("\nCalculating the Blue score ...")
                        print("Bleu_Score =", moses_multi_bleu(np.array([hypotheses]), np.array([references])))
                    global_step += 1

                print("------------------------------------------------------------------------------------------------------------")
        print("Training complete ...\n\n")
    def train(self,
              X,
              Y,
              batch_size,
              no_of_epochs,
              checkpoint_factor,
              model_save_path,
              model_name,
              mem_fraction=0.5):
        '''
            The training_function for the model.
        '''
        # Setup a tensorboard_writer:
        tensorboard_writer = self.__get_tensorboard_writer(model_save_path)

        # setup the data for training:
        # obtain the padded training data:
        train_X_field = X[0]
        train_X_content = X[1]
        train_Y = Y
        no_of_total_examples = len(train_X_field)

        # print len(train_X_field), len(train_X_content), len(train_Y)
        assert len(train_X_field) == len(train_X_content) and len(
            train_X_field) == len(train_Y), "input data lengths incompatible"
        ''' Start the actual Training loop: '''
        print("\n\nStarting the Training ... ")

        # use the given memory usage fraction for this training process
        tensor_config = tf.ConfigProto()
        tensor_config.gpu_options.allow_growth = False
        tensor_config.gpu_options.per_process_gpu_memory_fraction = mem_fraction

        print("tensorflow configuration user:"******"gpu memory fraction used:", mem_fraction)

        with tf.Session(config=tensor_config, graph=self.graph) as sess:
            # create a saver object:
            saver = tf.train.Saver(max_to_keep=3)

            # create the checkpoint file:
            checkpoint_file = os.path.join(model_save_path, "checkpoint")

            # If old weights found, restart the training from there:
            if (os.path.isfile(checkpoint_file)):
                # load the saved weights:
                saver.restore(sess,
                              tf.train.latest_checkpoint(model_save_path))

                # load the global_step value from the checkpoint file
                with open(checkpoint_file, 'r') as checkpoint:
                    path = checkpoint.readline().strip()
                    global_step = int((path.split(':')[1]).split('-')[1][:-1])

            # otherwise initialize all the weights
            else:
                global_step = 0
                sess.run(self.init)

            # print("uninitialized variables:")
            # print(sess.run(tf.report_uninitialized_variables()))

            # run a loop for no_of_epochs iterations:
            for epoch in range(no_of_epochs):
                print(
                    "------------------------------------------------------------------------------------------------------------"
                )
                print("current_epoch: ", (epoch + 1))

                # Iterate over the batches of the given train data:
                for batch_no in range(
                        int(np.ceil(float(no_of_total_examples) /
                                    batch_size))):
                    # obtain the current batch of data:
                    start = (batch_no * batch_size)
                    end = start + batch_size
                    batch_inp_field = train_X_field[start:end]
                    batch_inp_conte = train_X_content[start:end]
                    batch_inp_label = train_Y[start:end]
                    # pad the current batch of data:
                    inp_field = pad_sequences(batch_inp_field)
                    inp_conte = pad_sequences(batch_inp_conte)
                    inp_label = pad_sequences(batch_inp_label)
                    # extract the sequence lengths of examples in this batch
                    inp_lengths = get_lengths(batch_inp_field)
                    lab_lengths = get_lengths(batch_inp_label)

                    # execute the cost and the train_step
                    _, cost = sess.run(
                        [self.train_step, self.loss],
                        feed_dict={
                            self.inp_field_encodings: inp_field,
                            self.inp_content_encodings: inp_conte,
                            self.inp_label_encodings: inp_label,
                            self.inp_sequence_lengths: inp_lengths,
                            self.lab_sequence_lengths: lab_lengths
                        })
                    print("Range: ", "[", start, "-", (start + len(inp_field)),
                          "]", " Cost: ", cost)

                    if ((global_step + 1) % checkpoint_factor == 0
                            or global_step == 0):
                        # generate the summary for this batch:
                        sums, predicts = sess.run(
                            [self.all_summaries, self.outputs],
                            feed_dict={
                                self.inp_field_encodings: inp_field,
                                self.inp_content_encodings: inp_conte,
                                self.inp_label_encodings: inp_label,
                                self.inp_sequence_lengths: inp_lengths,
                                self.lab_sequence_lengths: lab_lengths
                            })

                        # save this generated summary to the summary file
                        tensorboard_writer.add_summary(sums,
                                                       global_step=global_step)

                        # also save the model
                        saver.save(sess,
                                   os.path.join(model_save_path, model_name),
                                   global_step=global_step)

                        # print a random sample from this batch:
                        random_index = np.random.randint(len(inp_field))

                        random_label_sample = inp_label[random_index]
                        random_predicts_sample = np.argmax(
                            predicts, axis=-1)[random_index]

                        hypotheses = reduce(lambda x, y: x + " " + y, [
                            self.content_label_vocabulary[label]
                            for label in random_predicts_sample
                        ])
                        references = reduce(lambda x, y: x + " " + y, [
                            self.content_label_vocabulary[label]
                            for label in random_label_sample
                        ])

                        # print the extracted sample in meaningful format
                        print("\nOriginal Summary: ")
                        print(references)

                        print("\nPredicted Summary: ")
                        print(hypotheses)

                        # calculate the Bleu score
                        print("\nCalculating the Blue score ...")
                        print(
                            "Bleu_Score =",
                            moses_multi_bleu(np.array([hypotheses]),
                                             np.array([references])))
                    global_step += 1

                print(
                    "------------------------------------------------------------------------------------------------------------"
                )
        print("Training complete ...\n\n")