Exemple #1
0
def chat(args):
    with tf.Session() as sess:
        # Create model and load parameters.
        args.batch_size = 1  # We decode one sentence at a time.
        model = create_model(sess, args)

        # Load vocabularies.
        vocab_path = os.path.join(args.data_dir,
                                  "vocab%d.in" % args.vocab_size)
        vocab, rev_vocab = data_utils.initialize_vocabulary(vocab_path)

        # Decode from standard input.
        sys.stdout.write("> ")
        sys.stdout.flush()
        sentence = sys.stdin.readline()

        while sentence:
            predicted_sentence = get_predicted_sentence(
                args, sentence, vocab, rev_vocab, model, sess)
            # print(predicted_sentence)
            if isinstance(predicted_sentence, list):
                for sent in predicted_sentence:
                    print("  (%s) -> %s" % (sent['prob'], sent['dec_inp']))
            else:
                print(sentence, ' -> ', predicted_sentence)

            sys.stdout.write("> ")
            sys.stdout.flush()
            sentence = sys.stdin.readline()
Exemple #2
0
def predict():
    def _get_test_dataset():
        with open(TEST_DATASET_PATH) as test_fh:
            test_sentences = [s.strip() for s in test_fh.readlines()]
        return test_sentences

    results_filename = '_'.join([
        'results',
        str(FLAGS.num_layers),
        str(FLAGS.size),
        str(FLAGS.vocab_size)
    ])
    results_path = os.path.join(FLAGS.results_dir, results_filename)

    with tf.Session() as sess, open(results_path, 'w') as results_fh:
        # Create model and load parameters.
        model = create_model(sess, forward_only=True)
        model.batch_size = 1  # We decode one sentence at a time.

        # Load vocabularies.
        vocab_path = os.path.join(FLAGS.data_dir,
                                  "vocab%d.in" % FLAGS.vocab_size)
        vocab, rev_vocab = data_utils.initialize_vocabulary(vocab_path)

        test_dataset = _get_test_dataset()

        for sentence in test_dataset:
            # Get token-ids for the input sentence.
            predicted_sentence = get_predicted_sentence(
                sentence, vocab, rev_vocab, model, sess)
            print(sentence + ' -> ' + predicted_sentence)

            results_fh.write(predicted_sentence + '\n')
Exemple #3
0
def chat():
    with tf.Session() as sess:
        # Create model and load parameters.
        model = create_model(sess, forward_only=True)
        model.batch_size = 1  # We decode one sentence at a time.

        # Load vocabularies.
        vocab_path = os.path.join(FLAGS.data_dir,
                                  "vocab%d.in" % FLAGS.vocab_size)
        vocab, rev_vocab = data_utils.initialize_vocabulary(vocab_path)

        # Decode from standard input.
        sys.stdout.write("> ")
        sys.stdout.flush()
        sentence = sys.stdin.readline()
        sentence = re.sub(u'[^\u4e00-\u9fa5,。;:?!‘’“”、]', '',
                          sentence.decode('utf-8'))
        sentence = re.sub(u'(?P<chinese>[\u4e00-\u9fa5,。;:?!‘’“”、])',
                          add_space, sentence)

        while sentence:
            predicted_sentence = get_predicted_sentence(
                sentence, vocab, rev_vocab, model, sess)
            print(predicted_sentence)
            print("> ")
            sys.stdout.flush()
            sentence = sys.stdin.readline()
            sentence = re.sub(u'[^\u4e00-\u9fa5,。;:?!‘’“”、]', '',
                              sentence.decode('utf-8'))
            sentence = re.sub(u'(?P<chinese>[\u4e00-\u9fa5,。;:?!‘’“”、])',
                              add_space, sentence)
Exemple #4
0
def predict(args, debug=False):
    def _get_test_dataset():
        # with open(args.test_dataset_path) as test_fh:
        with open(args.input_name) as test_fh:
            test_sentences = [s.strip() for s in test_fh.readlines()]
        return test_sentences

    results_filename = '_'.join([
        'results',
        str(args.num_layers),
        str(args.size),
        str(args.vocab_size)
    ])
    # results_path = os.path.join(args.results_dir, results_filename+'.txt')
    results_path = str(args.output_name)

    with tf.Session() as sess, open(results_path, 'w') as results_fh:
        # Create model and load parameters.
        args.batch_size = 1
        model = create_model(sess, args)

        # Load vocabularies.
        vocab_path = os.path.join(args.data_dir,
                                  "vocab%d.in" % args.vocab_size)
        vocab, rev_vocab = data_utils.initialize_vocabulary(vocab_path)

        test_dataset = _get_test_dataset()

        for sentence in test_dataset:
            # Get token-ids for the input sentence.
            predicted_sentence = get_predicted_sentence(args,
                                                        sentence,
                                                        vocab,
                                                        rev_vocab,
                                                        model,
                                                        sess,
                                                        debug=debug)
            if isinstance(predicted_sentence, list):
                print("%s : (%s)" % (sentence, datetime.now()))
                # results_fh.write("%s : (%s)\n" % (sentence, datetime.now()))
                for sent in predicted_sentence:
                    print("  (%s) -> %s" % (sent['prob'], sent['dec_inp']))
                    # results_fh.write("  (%f) -> %s\n" % (sent['prob'], sent['dec_inp']))
                    results_fh.write("%s\n" % (sent['dec_inp']))
            else:
                print(sentence, ' -> ', predicted_sentence)
                # results_fh.write("%s -> %s\n" % (sentence, predicted_sentence))
                results_fh.write("%s\n" % (predicted_sentence))
            # break

    results_fh.close()
    print("results written in %s" % results_path)
Exemple #5
0
def train():
    print("Preparing dialog data in %s" % FLAGS.data_dir)
    train_data, dev_data, _ = data_utils.prepare_dialog_data(
        FLAGS.data_dir, FLAGS.vocab_size)

    with tf.Session() as sess:

        # Create model.
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.size))
        model = create_model(sess, forward_only=False)

        # Read data into buckets and compute their sizes.
        print("Reading development and training data (limit: %d)." %
              FLAGS.max_train_data_size)
        dev_set = read_data(dev_data)
        train_set = read_data(train_data, FLAGS.max_train_data_size)
        train_bucket_sizes = [len(train_set[b]) for b in xrange(len(BUCKETS))]
        train_total_size = float(sum(train_bucket_sizes))

        # A bucket scale is a list of increasing numbers from 0 to 1 that we'll use
        # to select a bucket. Length of [scale[i], scale[i+1]] is proportional to
        # the size if i-th training bucket, as used later.
        train_buckets_scale = [
            sum(train_bucket_sizes[:i + 1]) / train_total_size
            for i in xrange(len(train_bucket_sizes))
        ]

        # This is the training loop.
        step_time, loss = 0.0, 0.0
        current_step = 0
        previous_losses = []
        max_global_step = 120000
        while model.global_step.eval() < max_global_step:
            # Choose a bucket according to data distribution. We pick a random number
            # in [0, 1] and use the corresponding interval in train_buckets_scale.
            random_number_01 = np.random.random_sample()
            bucket_id = min([
                i for i in xrange(len(train_buckets_scale))
                if train_buckets_scale[i] > random_number_01
            ])

            # Get a batch and make a step.
            start_time = time.time()
            encoder_inputs, encoder1_inputs, decoder_inputs, target_weights = model.get_batch(
                train_set, bucket_id)

            _, step_loss, _ = model.step(sess,
                                         encoder_inputs,
                                         encoder1_inputs,
                                         decoder_inputs,
                                         target_weights,
                                         bucket_id,
                                         forward_only=False)

            step_time += (time.time() -
                          start_time) / FLAGS.steps_per_checkpoint
            loss += step_loss / FLAGS.steps_per_checkpoint
            current_step += 1

            # Once in a while, we save checkpoint, print statistics, and run evals.
            if current_step % FLAGS.steps_per_checkpoint == 0:
                # Print statistics for the previous epoch.
                perplexity = math.exp(loss) if loss < 300 else float('inf')
                print(
                    "global step %d learning rate %.4f step-time %.2f perplexity %.2f"
                    % (model.global_step.eval(), model.learning_rate.eval(),
                       step_time, perplexity))

                # Decrease learning rate if no improvement was seen over last 3 times.
                if len(previous_losses) > 2 and loss > max(
                        previous_losses[-3:]):
                    sess.run(model.learning_rate_decay_op)

                previous_losses.append(loss)

                # Save checkpoint and zero timer and loss.
                checkpoint_path = os.path.join(FLAGS.model_dir, "model.ckpt")
                model.saver.save(sess,
                                 checkpoint_path,
                                 global_step=model.global_step)
                with open(FLAGS.emb_path, 'w') as f:
                    pickle.dump(sess.run(model.embeddings), f)
                step_time, loss = 0.0, 0.0

                # Run evals on development set and print their perplexity.
                for bucket_id in xrange(len(BUCKETS)):
                    encoder_inputs, encoder1_inputs, decoder_inputs, target_weights = model.get_batch(
                        dev_set, bucket_id)
                    _, eval_loss, _ = model.step(sess, encoder_inputs,
                                                 encoder1_inputs,
                                                 decoder_inputs,
                                                 target_weights, bucket_id,
                                                 True)

                    eval_ppx = math.exp(
                        eval_loss) if eval_loss < 300 else float('inf')
                    print("  eval: bucket %d perplexity %.2f" %
                          (bucket_id, eval_ppx))

                sys.stdout.flush()
Exemple #6
0
def predict():

    f = open('pkl_tianya/q_table.pkl')
    qtable = pickle.load(f)
    f.close()
    #f = open('pkl_file/n_table.pkl')
    #ntable = pickle.load(f)
    #f.close()
    f = open('pkl_tianya/co_table.pkl')
    cotable = pickle.load(f)
    f.close()
    f = open('/home/zyma/work/data_daily_punct/nouns2500.in')
    nouns = f.readlines()
    nouns = [ele.strip() for ele in nouns]
    f.close()

    def _get_test_dataset():
        with open(TEST_DATASET_PATH) as test_fh:
            test_sentences = [s.strip() for s in test_fh.readlines()]
        return test_sentences

    results_filename = '_'.join([
        'results',
        str(FLAGS.num_layers),
        str(FLAGS.size),
        str(FLAGS.vocab_size)
    ])
    results_path = os.path.join(FLAGS.results_dir, results_filename)
    #ss = u'你好'
    #ss = ss.encode('utf-8')
    #print(ss)
    with tf.Session() as sess, open(results_path, 'a') as results_fh:
        #with tf.Session() as sess:
        # Create model and load parameters.
        bw_model, fw_model = create_model(sess)
        bw_model.batch_size = 1
        fw_model.batch_size = 1
        # Load vocabularies.
        vocab_path = os.path.join(FLAGS.data_dir,
                                  "vocab%d.in" % FLAGS.vocab_size)
        vocab, rev_vocab = data_utils.initialize_vocabulary(vocab_path)
        print(vocab.items()[:20])

        test_dataset = _get_test_dataset()
        #test_dataset = test_dataset[374:]
        #predicted_sentences = beam_search(test_dataset,vocab,rev_vocab,model,sess)
        #results_fh.write('\n'.join(predicted_sentences))

        for sentence in test_dataset:
            # Get token-ids for the input sentence.
            #best,predicted_sentences,scores = beam_search(sentence, vocab, rev_vocab, model, sess)
            key_word = sentencePMI(sentence, cotable, qtable, nouns)
            print('key_word:%s' % key_word)
            bw_sentence = get_predicted_sentence(sentence, key_word, vocab,
                                                 rev_vocab, bw_model, sess)
            print(bw_sentence)
            bw_sentence = bw_sentence.split()[:10]
            bw_sentence.reverse()
            bw_sentence = ' '.join(bw_sentence)
            print('bw_sentence:%s' % bw_sentence)
            predicted_sentences = get_predicted_sentence(
                sentence, bw_sentence, vocab, rev_vocab, fw_model, sess)
            print(sentence + ' -> ' + predicted_sentences)
            #predicted_sentences = predicted_sentences.split()
            #predicted_sentences = ' '.join(predicted_sentences[:1])
            #predicted_sentences = get_predicted_sentence(sentence,None,vocab,rev_vocab,fw_model,sess)
            #print(sentence+' ---> '+predicted_sentences)
            #print ('\n'.join([str(ele)+','+predicted_sentences[ind] for ind,ele in enumerate(scores)]))
            #print(len(scores))
            #results_fh.write(best+'\n')

            results_fh.write(predicted_sentences + '(%s)' % key_word + '\n')
Exemple #7
0
def train():
    print FLAGS.time_slot, train_data_path, save_model_dir, FLAGS.hidden_dim
    # load data
    dataset = Data(FLAGS.batch_size, FLAGS.encoder_size, FLAGS.decoder_size,
                   train_data_path, test_data_path)
    train_X, train_y, test_X, test_y = dataset.train_inputs, dataset.train_labels, dataset.test_inputs, \
        dataset.test_labels

    tolerance_count = 0
    checkpoint_dir = os.path.join(
        save_model_dir, "%dhidden_%ddecoder_bestmodel.ckpt" %
        (FLAGS.hidden_dim, FLAGS.decoder_size))
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        global_test_error = 1000000
        best_model = sess
        model = create_model(sess, FLAGS.encoder_size, FLAGS.decoder_size, FLAGS.hidden_dim, FLAGS.input_dim, \
            FLAGS.output_dim, load_model, checkpoint_dir)

        # training
        for epoch in range(FLAGS.epoches):
            st = time.time()
            epoch_loss = 0.0
            total_step = train_X.shape[0] / FLAGS.batch_size
            for step in range(total_step):
                encode_inputs, decode_inputs = model.get_batch(
                    train_X, train_y, FLAGS.batch_size, step)
                step_loss, predict_outputs = model.step(sess, encode_inputs, decode_inputs, FLAGS.encoder_size, \
                    FLAGS.decoder_size, is_training=True)
                epoch_loss += step_loss
                if step % 20 == 0:
                    print 'train(step:%d/%d epoch:%d/%d)'%(step+1,total_step,epoch+1,FLAGS.epoches), '\t', \
                    predict_outputs[0][0], '\t', decode_inputs[0][0], '\t loss:', step_loss
            print "train loss %.6f in epoch=%d, time=%f" % (
                epoch_loss, epoch + 1, time.time() - st)

            # validation
            if (epoch + 1) % FLAGS.check_per_epoches == 0:
                print " validation (epoch:%d/%d)" % (epoch + 1, FLAGS.epoches)
                # test dataset
                test_loss = 0.0
                times = 0.0
                for step_test in range(len(test_X) / FLAGS.batch_size):
                    encode_inputs, decode_inputs = model.get_batch(
                        test_X, test_y, FLAGS.batch_size, step_test)
                    step_loss, predict_outputs = model.step(sess, encode_inputs, decode_inputs, FLAGS.encoder_size, \
                        FLAGS.decoder_size, is_training=False)
                    test_loss += step_loss

                # update min test loss
                if test_loss < global_test_error:
                    tolerance_count = 0
                    global_test_error = test_loss
                    model.saver.save(
                        sess,
                        os.path.join(
                            save_model_dir,
                            "%dhidden_%ddecoder_bestmodel.ckpt" %
                            (FLAGS.hidden_dim, FLAGS.decoder_size)))
                else:
                    tolerance_count += FLAGS.check_per_epoches
                print "test loss %.6f in epoch=%d" % (test_loss, epoch + 1)
                print "global min test loss %.6f in epoch=%d" % (
                    global_test_error, epoch + 1)

                if tolerance_count >= 50:
                    break

        print 'The final final final global min test error: %f' % global_test_error