def __init__(self, email=None, upload=None, log_name='seqc.log', terminate=True, debug=False): """Execution context for on-server code execution with defined clean-up practices. This is the cognate context manager to aws_setup, and when used with aws_setup(), ensures that all errors are captured and, if desirable, instances can be properly terminated. usage: ------ with aws_execute(email=addr, upload=s3://my_bucket/my_key/, terminate=True): <execute code here> :param email: email address to send the log containing execution summary and any errors :param upload: s3 location to upload the log to :param log_name: name of the log object :param terminate: if True, terminate the instance upon completion, provided that no errors occurred. :param debug: if True, instance is not terminated when an error is raised """ self.email = email self.log_name = log_name # changed mount point to ~, cwd is good. self.terminate = terminate # only terminate if no errors occur self.aws_upload_key = upload self.err_status = False self.mutt = verify.executables('mutt')[ 0] # unpacking necessary for singleton self.debug = debug
def run(args) -> None: """Run SEQC on the files provided in args, given specifications provided on the command line :param args: parsed argv, produced by seqc.parser(). This function is only called when args.subprocess_name is "run". """ # import inside module for pickle functionality # top 2 only needed for post-filtering import os import multiprocessing from seqc import log, ec2, platforms, io from seqc.sequence import fastq from seqc.alignment import star from seqc.email_ import email_user from seqc.read_array import ReadArray from seqc.core import verify, download from seqc import filter from seqc.sequence.gtf import GeneIntervals from seqc.summary.summary import Section, Summary import numpy as np import scipy.io from shutil import copyfile from seqc.summary.summary import MiniSummary from seqc.stats.mast import run_mast import logging logger = logging.getLogger('weasyprint') logger.handlers = [] # Remove the default stderr handler logger.setLevel(100) logger.addHandler(logging.FileHandler('weasyprint.log')) def determine_start_point(arguments) -> (bool, bool, bool): """ determine where seqc should start based on which parameters were passed. :param arguments: Namespace object, result of ArgumentParser.parse_args() :returns merge, align, process_bamfile: indicates whether merging, alignment, and processing bamfiles should be executed. """ if arguments.read_array: return False, False, False if arguments.alignment_file: return False, False, True if arguments.merged_fastq: return False, True, True else: return True, True, True def download_input(dir_, arguments): """parse input arguments and download any necessary data :param str dir_: directory to download data to :param arguments: namespace object from argparse :return args: updated namespace object reflecting local file paths of downloaded files """ # download basespace data if necessary if arguments.basespace: arguments.barcode_fastq, arguments.genomic_fastq = io.BaseSpace.download( arguments.platform, arguments.basespace, dir_, arguments.basespace_token) # check for remote fastq file links arguments.genomic_fastq = download.s3_data( arguments.genomic_fastq, dir_ + '/genomic_fastq/') arguments.barcode_fastq = download.s3_data( arguments.barcode_fastq, dir_ + '/barcode_fastq/') # get merged fastq file, unzip if necessary arguments.merged_fastq = ( download.s3_data([arguments.merged_fastq], dir_ + '/')[0] if arguments.merged_fastq is not None else None) # check if the index must be downloaded if any((arguments.alignment_file, arguments.read_array)): index_link = arguments.index + 'annotations.gtf' else: index_link = arguments.index download.s3_data([index_link], dir_ + '/index/') arguments.index = dir_ + '/index/' # check if barcode files must be downloaded arguments.barcode_files = download.s3_data( arguments.barcode_files, dir_ + '/barcodes/') # check if alignment_file needs downloading if arguments.alignment_file: arguments.alignment_file = download.s3_data( [arguments.alignment_file], dir_ + '/')[0] # check if readarray needs downloading if arguments.read_array: arguments.read_array = download.s3_data([arguments.read_array], dir_ + '/')[0] return arguments def merge_fastq_files( technology_platform, barcode_fastq: [str], output_stem: str, genomic_fastq: [str]) -> (str, int): """annotates genomic fastq with barcode information; merging the two files. :param technology_platform: class from platforms.py that defines the characteristics of the data being processed :param barcode_fastq: list of str names of fastq files containing barcode information :param output_stem: str, stem for output files :param genomic_fastq: list of str names of fastq files containing genomic information :returns str merged_fastq: name of merged fastq file """ log.info('Merging genomic reads and barcode annotations.') merged_fastq = fastq.merge_paired( merge_function=technology_platform.merge_function, fout=output_stem + '_merged.fastq', genomic=genomic_fastq, barcode=barcode_fastq) # delete genomic/barcode fastq files after merged.fastq creation log.info('Removing original fastq file for memory management.') delete_fastq = ' '.join(['rm'] + genomic_fastq + barcode_fastq) io.ProcessManager(delete_fastq).run_all() return merged_fastq def align_fastq_records( merged_fastq, dir_, star_args, star_index, n_proc, aws_upload_key) -> (str, str, io.ProcessManager): """ Align fastq records. :param merged_fastq: str, path to merged .fastq file :param dir_: str, stem for output files :param star_args: dict, extra keyword arguments for STAR :param star_index: str, file path to directory containing STAR index :param n_proc: int, number of STAR processes to initiate :param aws_upload_key: str, location to upload files, or None if seqc was initiated from a merged fastq file. :return bamfile, input_data, upload_manager: (str, str, io.ProcessManager) name of .sam file containing aligned reads, indicator of which data was used as input, and a ProcessManager for merged fastq files """ log.info('Aligning merged fastq records.') alignment_directory = dir_ + '/alignments/' os.makedirs(alignment_directory, exist_ok=True) if star_args is not None: star_kwargs = dict(a.strip().split('=') for a in star_args) else: star_kwargs = {} bamfile = star.align( merged_fastq, star_index, n_proc, alignment_directory, **star_kwargs) if aws_upload_key: log.info('Gzipping merged fastq file.') if pigz: pigz_zip = "pigz --best -k -f {fname}".format(fname=merged_fastq) else: pigz_zip = "gzip -kf {fname}".format(fname=merged_fastq) pigz_proc = io.ProcessManager(pigz_zip) pigz_proc.run_all() pigz_proc.wait_until_complete() # prevents slowing down STAR alignment merged_fastq += '.gz' # reflect gzipped nature of file log.info('Uploading gzipped merged fastq file to S3.') merge_upload = 'aws s3 mv {fname} {s3link}'.format( fname=merged_fastq, s3link=aws_upload_key) upload_manager = io.ProcessManager(merge_upload) upload_manager.run_all() else: log.info('Removing merged fastq file for memory management.') rm_merged = 'rm %s' % merged_fastq io.ProcessManager(rm_merged).run_all() upload_manager = None return bamfile, upload_manager def create_read_array(bamfile, index, aws_upload_key, min_poly_t, max_transcript_length): """Create or download a ReadArray object. :param max_transcript_length: :param str bamfile: filename of .bam file :param str index: directory containing index files :param str aws_upload_key: key where aws files should be uploaded :param int min_poly_t: minimum number of poly_t nucleotides for a read to be valid :returns ReadArray, UploadManager: ReadArray object, bamfile ProcessManager """ log.info('Filtering aligned records and constructing record database.') # Construct translator translator = GeneIntervals( index + 'annotations.gtf', max_transcript_length=max_transcript_length) read_array = ReadArray.from_alignment_file( bamfile, translator, min_poly_t) # converting sam to bam and uploading to S3, else removing bamfile if aws_upload_key: log.info('Uploading bam file to S3.') upload_bam = 'aws s3 mv {fname} {s3link}{prefix}_Aligned.out.bam'.format( fname=bamfile, s3link=aws_upload_key, prefix=args.output_prefix) print(upload_bam) upload_manager = io.ProcessManager(upload_bam) upload_manager.run_all() else: log.info('Removing bamfile for memory management.') rm_bamfile = 'rm %s' % bamfile io.ProcessManager(rm_bamfile).run_all() upload_manager = None return read_array, upload_manager # ######################## MAIN FUNCTION BEGINS HERE ################################ log.setup_logger(args.log_name) with ec2.instance_clean_up( email=args.email, upload=args.upload_prefix, log_name=args.log_name, debug=args.debug, terminate=args.terminate ): pigz, mutt = verify.executables('pigz', 'mutt') if mutt: log.notify('mutt executable identified, email will be sent when run ' 'terminates. ') else: log.notify('mutt was not found on this machine; an email will not be sent to ' 'the user upon termination of SEQC run.') # turn off lower coverage filter for 10x if (args.platform == "ten_x") or (args.platform == "ten_x_v2") or (args.platform == "ten_x_v3"): args.filter_low_coverage = False max_insert_size = args.max_insert_size if args.filter_mode == "scRNA-seq": # for scRNA-seq if (args.platform == "ten_x") or (args.platform == "ten_x_v2") or (args.platform == "ten_x_v3"): # set max_transcript_length (max_insert_size) = 10000 max_insert_size = 10000 log.notify("Full length transcripts are used for read mapping in 10x data.") elif args.filter_mode == "snRNA-seq": # for snRNA-seq # e.g. 2304700 # hg38 # e.g. 4434881 # mm38 max_insert_size = args.max_insert_size else: # all others max_insert_size = args.max_insert_size log.notify("max_insert_size is set to {}".format(max_insert_size)) log.args(args) output_dir, output_prefix = os.path.split(args.output_prefix) if not output_dir: output_dir = '.' # check if the platform name provided is supported by seqc # todo move into verify for run platform_name = verify.platform_name(args.platform) platform = platforms.AbstractPlatform.factory(platform_name) # returns platform n_processes = multiprocessing.cpu_count() - 1 # get number of processors merge, align, process_bamfile = determine_start_point(args) args = download_input(output_dir, args) if args.platform == "in_drop_v5": platform = platform.build_cb2_barcodes(args.barcode_files) log.notify("Built cb2 barcode hash for v5 barcodes.") if merge: if args.min_poly_t is None: # estimate min_poly_t if it was not provided args.min_poly_t = filter.estimate_min_poly_t( args.barcode_fastq, platform) log.notify('Estimated min_poly_t={!s}'.format(args.min_poly_t)) args.merged_fastq = merge_fastq_files( platform, args.barcode_fastq, args.output_prefix, args.genomic_fastq) # SEQC was started from input other than fastq files if args.min_poly_t is None: args.min_poly_t = 0 log.notify('Warning: SEQC started from step other than unmerged fastq with ' 'empty --min-poly-t parameter. Continuing with --min-poly-t 0.') if align: upload_merged = args.upload_prefix if merge else None args.alignment_file, manage_merged = align_fastq_records( args.merged_fastq, output_dir, args.star_args, args.index, n_processes, upload_merged) else: manage_merged = None if process_bamfile: upload_bamfile = args.upload_prefix if align else None ra, manage_bamfile, = create_read_array( args.alignment_file, args.index, upload_bamfile, args.min_poly_t, max_insert_size) else: manage_bamfile = None ra = ReadArray.load(args.read_array) # create the first summary section here status_filters_section = Section.from_status_filters(ra, 'initial_filtering.html') sections = [status_filters_section] # Skip over the corrections if read array is specified by the user if not args.read_array: # Correct barcodes log.info('Correcting barcodes and estimating error rates.') error_rate = platform.apply_barcode_correction(ra, args.barcode_files) # Resolve multimapping log.info('Resolving ambiguous alignments.') mm_results = ra.resolve_ambiguous_alignments() # correct errors log.info('Identifying RMT errors.') platform.apply_rmt_correction(ra, error_rate) # Apply low coverage filter if platform.filter_lonely_triplets: log.info('Filtering lonely triplet reads') ra.filter_low_coverage(alpha=args.low_coverage_alpha) log.info('Saving read array.') ra.save(args.output_prefix + '.h5') # Summary sections # create the sections for the summary object sections += [ Section.from_cell_barcode_correction(ra, 'cell_barcode_correction.html'), Section.from_rmt_correction(ra, 'rmt_correction.html'), Section.from_resolve_multiple_alignments(mm_results, 'multialignment.html')] # create a dictionary to store output parameters mini_summary_d = dict() # filter non-cells log.info('Creating counts matrix.') sp_reads, sp_mols = ra.to_count_matrix( sparse_frame=True, genes_to_symbols=args.index + 'annotations.gtf') # Save sparse matrices log.info('Saving sparse matrices') scipy.io.mmwrite(args.output_prefix + '_sparse_read_counts.mtx', sp_reads.data) scipy.io.mmwrite(args.output_prefix + '_sparse_molecule_counts.mtx', sp_mols.data) # Indices df = np.array([np.arange(sp_reads.shape[0]), sp_reads.index]).T np.savetxt( args.output_prefix + '_sparse_counts_barcodes.csv', df, fmt='%d', delimiter=',') # Columns df = np.array([np.arange(sp_reads.shape[1]), sp_reads.columns]).T np.savetxt( args.output_prefix + '_sparse_counts_genes.csv', df, fmt='%s', delimiter=',') log.info('Creating filtered counts matrix.') cell_filter_figure = args.output_prefix + '_cell_filters.png' # By pass low count filter for mars seq sp_csv, total_molecules, molecules_lost, cells_lost, cell_description = ( filter.create_filtered_dense_count_matrix( sp_mols, sp_reads, mini_summary_d, plot=True, figname=cell_filter_figure, filter_low_count=platform.filter_low_count, filter_mitochondrial_rna=args.filter_mitochondrial_rna, filter_low_coverage=args.filter_low_coverage, filter_low_gene_abundance=args.filter_low_gene_abundance)) # Output files files = [cell_filter_figure, args.output_prefix + '.h5', args.output_prefix + '_sparse_read_counts.mtx', args.output_prefix + '_sparse_molecule_counts.mtx', args.output_prefix + '_sparse_counts_barcodes.csv', args.output_prefix + '_sparse_counts_genes.csv'] # Summary sections # create the sections for the summary object sections += [ Section.from_cell_filtering(cell_filter_figure, 'cell_filtering.html'), Section.from_run_time(args.log_name, 'seqc_log.html')] # get alignment summary if os.path.isfile(output_dir + '/alignments/Log.final.out'): os.rename(output_dir + '/alignments/Log.final.out', output_dir + '/' + args.output_prefix + '_alignment_summary.txt') # Upload files and summary sections files += [output_dir + '/' + args.output_prefix + '_alignment_summary.txt'] sections.insert( 0, Section.from_alignment_summary( output_dir + '/' + args.output_prefix + '_alignment_summary.txt', 'alignment_summary.html')) cell_size_figure = 'cell_size_distribution.png' index_section = Section.from_final_matrix( sp_csv, cell_size_figure, 'cell_distribution.html') seqc_summary = Summary( output_dir + '/' + args.output_prefix + '_summary', sections, index_section) seqc_summary.prepare_archive() seqc_summary.import_image(cell_filter_figure) seqc_summary.import_image(cell_size_figure) seqc_summary.render() summary_archive = seqc_summary.compress_archive() files += [summary_archive] # Create a mini summary section alignment_summary_file = output_dir + '/' + args.output_prefix + '_alignment_summary.txt' seqc_mini_summary = MiniSummary( args.output_prefix, mini_summary_d, alignment_summary_file, cell_filter_figure, cell_size_figure) seqc_mini_summary.compute_summary_fields(ra, sp_csv) seqc_mini_summary_json, seqc_mini_summary_pdf = seqc_mini_summary.render() files += [seqc_mini_summary_json, seqc_mini_summary_pdf] # Running MAST for differential analysis # file storing the list of differentially expressed genes for each cluster de_gene_list_file = run_mast( seqc_mini_summary.get_counts_filtered(), seqc_mini_summary.get_clustering_result(), args.output_prefix) files += [de_gene_list_file] # adding the cluster column and write down gene-cell count matrix dense_csv = args.output_prefix + '_dense.csv' sp_csv.insert(loc=0, column='CLUSTER', value=seqc_mini_summary.get_clustering_result()) sp_csv.to_csv(dense_csv) files += [dense_csv] if args.upload_prefix: # Upload count matrices files, logs, and return bucket, key = io.S3.split_link(args.upload_prefix) for item in files: try: ec2.Retry(retries=5)(io.S3.upload_file)(item, bucket, key) item_name = item.split('/')[-1] log.info('Successfully uploaded %s to the specified S3 location ' '"%s%s".' % (item, args.upload_prefix, item_name)) except FileNotFoundError: log.notify('Item %s was not found! Continuing with upload...' % item) if manage_merged: manage_merged.wait_until_complete() log.info('Successfully uploaded %s to the specified S3 location "%s"' % (args.merged_fastq, args.upload_prefix)) if manage_bamfile: manage_bamfile.wait_until_complete() log.info('Successfully uploaded %s to the specified S3 location "%s"' % (args.alignment_file, args.upload_prefix)) log.info('SEQC run complete. Cluster will be terminated') # upload logs if args.upload_prefix: # Upload count matrices files, logs, and return bucket, key = io.S3.split_link(args.upload_prefix) for item in [args.log_name, './nohup.log']: try: # Make a copy of the file with the output prefix copyfile(item, args.output_prefix + '_' + item) print(args.output_prefix + '_' + item) ec2.Retry(retries=5)(io.S3.upload_file)( args.output_prefix + '_' + item, bucket, key) log.info('Successfully uploaded %s to the specified S3 location ' '"%s".' % (item, args.upload_prefix)) except FileNotFoundError: log.notify('Item %s was not found! Continuing with upload...' % item) # todo local test does not send this email if mutt: email_body = ( '<font face="Courier New, Courier, monospace">' 'SEQC RUN COMPLETE.\n\n' 'The run log has been attached to this email and ' 'results are now available in the S3 location you specified: ' '"%s"\n\n' % args.upload_prefix) email_body = email_body.replace('\n', '<br>').replace('\t', ' ') email_user(summary_archive, email_body, args.email)
def run(args) -> None: """Run SEQC on the files provided in args, given specifications provided on the command line :param args: parsed argv, produced by seqc.parser(). This function is only called when args.subprocess_name is "run". """ # import inside module for pickle functionality # top 2 only needed for post-filtering import os import multiprocessing from seqc import log, ec2, platforms, io, version from seqc.sequence import fastq from seqc.alignment import star from seqc.alignment import sam from seqc.email_ import email_user from seqc.read_array import ReadArray from seqc.core import verify, download from seqc import filter from seqc.sequence.gtf import GeneIntervals from seqc.summary.summary import Section, Summary import numpy as np import scipy.io from shutil import copyfile from shutil import move as movefile from seqc.summary.summary import MiniSummary from seqc.stats.mast import run_mast import logging import pickle import pendulum # logger = logging.getLogger('weasyprint') # logger.handlers = [] # Remove the default stderr handler # logger.setLevel(100) # logger.addHandler(logging.FileHandler('weasyprint.log')) def determine_start_point(arguments) -> (bool, bool, bool): """ determine where seqc should start based on which parameters were passed. :param arguments: Namespace object, result of ArgumentParser.parse_args() :returns merge, align, process_bamfile: indicates whether merging, alignment, and processing bamfiles should be executed. """ if arguments.read_array: return False, False, False if arguments.alignment_file: return False, False, True if arguments.merged_fastq: return False, True, True else: return True, True, True def download_input(dir_, arguments): """parse input arguments and download any necessary data :param str dir_: directory to download data to :param arguments: namespace object from argparse :return args: updated namespace object reflecting local file paths of downloaded files """ # download basespace data if necessary if arguments.basespace: arguments.barcode_fastq, arguments.genomic_fastq = io.BaseSpace.download( arguments.platform, arguments.basespace, dir_, arguments.basespace_token) # get a list of input FASTQ files # download from AWS S3 if the URI is prefixed with s3:// arguments.genomic_fastq = download.s3_data(arguments.genomic_fastq, dir_ + "/genomic_fastq/") arguments.barcode_fastq = download.s3_data(arguments.barcode_fastq, dir_ + "/barcode_fastq/") # get merged fastq file, unzip if necessary arguments.merged_fastq = (download.s3_data( [arguments.merged_fastq], dir_ + "/")[0] if arguments.merged_fastq is not None else None) # get a path to the STAR index files # download from AWS S3 if the URI is prefixed with s3:// if any((arguments.alignment_file, arguments.read_array)): index_link = arguments.index + "annotations.gtf" else: index_link = arguments.index index_files = download.s3_data([index_link], dir_ + "/index/") # use the first filename in the list to get the index directory # add a trailing slash to make the rest of the code not break;; # e.g. test-data/index/chrStart.txt --> test-data/index/ arguments.index = os.path.dirname(index_files[0]) + "/" # get a list of whitelisted barcodes files # download from AWS S3 if the URI is prefixed with s3:// arguments.barcode_files = download.s3_data(arguments.barcode_files, dir_ + "/barcodes/") # check if `alignment_file` is specified if arguments.alignment_file: # get the alignment filename (*.bam) # download from AWS S3 if the URI is prefixed with s3:// arguments.alignment_file = download.s3_data( [arguments.alignment_file], dir_ + "/")[0] # check if `read_array` is specified if arguments.read_array: # get the readarray fileanem (*.h5) # download from AWS S3 if the URI is prefixed with s3:// arguments.read_array = download.s3_data([arguments.read_array], dir_ + "/")[0] return arguments def merge_fastq_files( technology_platform, barcode_fastq: [str], output_stem: str, genomic_fastq: [str], ) -> (str, int): """annotates genomic fastq with barcode information; merging the two files. :param technology_platform: class from platforms.py that defines the characteristics of the data being processed :param barcode_fastq: list of str names of fastq files containing barcode information :param output_stem: str, stem for output files :param genomic_fastq: list of str names of fastq files containing genomic information :returns str merged_fastq: name of merged fastq file """ # hack: # Due to the non-platform agnostic glob behavior, # it is possible that L001_R1 is merged with L002_R2 (not L001_R2). # to avoid this problem, we first sort. # this is a temporary hacky solution barcode_fastq = sorted(barcode_fastq) genomic_fastq = sorted(genomic_fastq) log.info("Merging genomic reads and barcode annotations.") for bar_fq, gen_fq in zip(barcode_fastq, genomic_fastq): log.info("Merge {} with {}".format(os.path.basename(bar_fq), os.path.basename(gen_fq))) merged_fastq = fastq.merge_paired( merge_function=technology_platform.merge_function, fout=output_stem + "_merged.fastq", genomic=genomic_fastq, barcode=barcode_fastq, ) # delete genomic/barcode fastq files after merged.fastq creation # log.info('Removing original fastq file for memory management.') # delete_fastq = ' '.join(['rm'] + genomic_fastq + barcode_fastq) # io.ProcessManager(delete_fastq).run_all() return merged_fastq def align_fastq_records(merged_fastq, dir_, star_args, star_index, n_proc, aws_upload_key) -> (str, str, io.ProcessManager): """ Align fastq records. :param merged_fastq: str, path to merged .fastq file :param dir_: str, stem for output files :param star_args: dict, extra keyword arguments for STAR :param star_index: str, file path to directory containing STAR index :param n_proc: int, number of STAR processes to initiate :param aws_upload_key: str, location to upload files, or None if seqc was initiated from a merged fastq file. :return bamfile, input_data, upload_manager: (str, str, io.ProcessManager) name of .sam file containing aligned reads, indicator of which data was used as input, and a ProcessManager for merged fastq files """ log.info("Aligning merged fastq records.") alignment_directory = dir_ + "/alignments/" os.makedirs(alignment_directory, exist_ok=True) if star_args is not None: star_kwargs = dict(a.strip().split("=") for a in star_args) else: star_kwargs = {} bamfile = star.align(merged_fastq, star_index, n_proc, alignment_directory, **star_kwargs) log.info("Gzipping merged fastq file.") if pigz: pigz_zip = "pigz --best -f {fname}".format(fname=merged_fastq) else: pigz_zip = "gzip -f {fname}".format(fname=merged_fastq) pigz_proc = io.ProcessManager(pigz_zip) pigz_proc.run_all() pigz_proc.wait_until_complete() # prevents slowing down STAR alignment merged_fastq += ".gz" # reflect gzipped nature of file if aws_upload_key: log.info("Uploading gzipped merged fastq file to S3.") merge_upload = "aws s3 mv {fname} {s3link}".format( fname=merged_fastq, s3link=aws_upload_key) upload_manager = io.ProcessManager(merge_upload) upload_manager.run_all() else: # log.info('Removing merged fastq file for memory management.') # rm_merged = 'rm %s' % merged_fastq # io.ProcessManager(rm_merged).run_all() upload_manager = None return bamfile, upload_manager def create_read_array(bamfile, index, aws_upload_key, min_poly_t, max_transcript_length): """Create or download a ReadArray object. :param max_transcript_length: :param str bamfile: filename of .bam file :param str index: directory containing index files :param str aws_upload_key: key where aws files should be uploaded :param int min_poly_t: minimum number of poly_t nucleotides for a read to be valid :returns ReadArray, UploadManager: ReadArray object, bamfile ProcessManager """ log.info("Filtering aligned records and constructing record database.") # Construct translator translator = GeneIntervals(index + "annotations.gtf", max_transcript_length=max_transcript_length) read_array, read_names = ReadArray.from_alignment_file( bamfile, translator, min_poly_t) # converting sam to bam and uploading to S3, else removing bamfile if aws_upload_key: log.info("Uploading bam file to S3.") upload_bam = "aws s3 mv {fname} {s3link}{prefix}_Aligned.out.bam".format( fname=bamfile, s3link=aws_upload_key, prefix=args.output_prefix) print(upload_bam) upload_manager = io.ProcessManager(upload_bam) upload_manager.run_all() else: if os.path.exists(bamfile): movefile(bamfile, args.output_prefix + "_Aligned.out.bam") # log.info('Removing bamfile for memory management.') # rm_bamfile = 'rm %s' % bamfile # io.ProcessManager(rm_bamfile).run_all() upload_manager = None return read_array, upload_manager, read_names # ######################## MAIN FUNCTION BEGINS HERE ################################ log.setup_logger(args.log_name, args.debug) with ec2.instance_clean_up( email=args.email, upload=args.upload_prefix, log_name=args.log_name, debug=args.debug, terminate=args.terminate, running_remote=args.remote, ): start_run_time = pendulum.now() log.notify("SEQC=v{}".format(version.__version__)) log.notify("STAR=v{}".format(star.get_version())) log.notify("samtools=v{}".format(sam.get_version())) pigz, mutt = verify.executables("pigz", "mutt") if mutt: log.notify( "mutt executable identified, email will be sent when run " "terminates. ") else: log.notify( "mutt was not found on this machine; an email will not be sent to " "the user upon termination of SEQC run.") # turn off lower coverage filter for 10x if ((args.platform == "ten_x") or (args.platform == "ten_x_v2") or (args.platform == "ten_x_v3")): args.filter_low_coverage = False if args.platform == "ten_x_v2" or args.platform == "ten_x_v3": log.notify("Setting min_poly_t=0 for 10x v2 & v3") args.min_poly_t = 0 max_insert_size = args.max_insert_size if args.filter_mode == "scRNA-seq": # for scRNA-seq if ((args.platform == "ten_x") or (args.platform == "ten_x_v2") or (args.platform == "ten_x_v3")): # set max_transcript_length (max_insert_size) = 10000 max_insert_size = 10000 log.notify( "Full length transcripts are used for read mapping in 10x data." ) elif args.filter_mode == "snRNA-seq": # for snRNA-seq # e.g. 2304700 # hg38 # e.g. 4434881 # mm38 max_insert_size = args.max_insert_size else: # all others max_insert_size = args.max_insert_size log.notify("max_insert_size is set to {}".format(max_insert_size)) log.args(args) # e.g. # --output-prefix=test-data/_outs/test # output_dir=test-data # output_prefix=test output_dir, output_prefix = os.path.split(args.output_prefix) if not output_dir: output_dir = "." else: os.makedirs(output_dir, exist_ok=True) # check if the platform name provided is supported by seqc # todo move into verify for run platform_name = verify.platform_name(args.platform) platform = platforms.AbstractPlatform.factory( platform_name) # returns platform n_processes = multiprocessing.cpu_count( ) - 1 # get number of processors merge, align, process_bamfile = determine_start_point(args) args = download_input(output_dir, args) if args.platform == "in_drop_v5": platform = platform.build_cb2_barcodes(args.barcode_files) log.notify("Built cb2 barcode hash for v5 barcodes.") if merge: if args.min_poly_t is None: # estimate min_poly_t if it was not provided args.min_poly_t = filter.estimate_min_poly_t( args.barcode_fastq, platform) log.notify("Estimated min_poly_t={!s}".format(args.min_poly_t)) args.merged_fastq = merge_fastq_files(platform, args.barcode_fastq, args.output_prefix, args.genomic_fastq) # SEQC was started from input other than fastq files if args.min_poly_t is None: args.min_poly_t = 0 log.warn( "Warning: SEQC started from step other than unmerged fastq with " "empty --min-poly-t parameter. Continuing with --min-poly-t 0." ) if align: upload_merged = args.upload_prefix if merge else None args.alignment_file, manage_merged = align_fastq_records( args.merged_fastq, output_dir, args.star_args, args.index, n_processes, upload_merged, ) else: manage_merged = None if process_bamfile: # if the starting point was a BAM file (i.e. args.alignment_file=*.bam & align=False) # do not upload by setting this to None upload_bamfile = args.upload_prefix if align else None ra, manage_bamfile, read_names = create_read_array( args.alignment_file, args.index, upload_bamfile, args.min_poly_t, max_insert_size, ) else: manage_bamfile = None ra = ReadArray.load(args.read_array) # fixme: the old read_array doesn't have read_names read_names = None # create the first summary section here status_filters_section = Section.from_status_filters( ra, "initial_filtering.html") sections = [status_filters_section] # Skip over the corrections if read array is specified by the user if not args.read_array: # Correct barcodes log.info("Correcting barcodes and estimating error rates.") error_rate, df_cb_correction = platform.apply_barcode_correction( ra, args.barcode_files) if df_cb_correction is not None and len(df_cb_correction) > 0: df_cb_correction.to_csv( args.output_prefix + "_cb-correction.csv.gz", index=False, compression="gzip", ) # Resolve multimapping log.info("Resolving ambiguous alignments.") mm_results = ra.resolve_ambiguous_alignments() # 121319782799149 / 614086965 / pos=49492038 / AAACATAACG # 121319782799149 / 512866590 / pos=49490848 / TCAATTAATC (1 hemming dist away from TCAATTAATT) # ra.data["rmt"][91490] = 512866590 # ra.positions[91490] = 49492038 # correct errors log.info("Identifying RMT errors.") df_umi_correction = platform.apply_rmt_correction(ra, error_rate) if df_umi_correction is not None and len(df_umi_correction) > 0: df_umi_correction.to_csv( args.output_prefix + "_umi-correction.csv.gz", index=False, compression="gzip", ) # Apply low coverage filter if platform.filter_lonely_triplets: log.info("Filtering lonely triplet reads") ra.filter_low_coverage(alpha=args.low_coverage_alpha) log.info("Saving read array.") ra.save(args.output_prefix + ".h5") # generate a file with read_name, corrected cb, corrected umi # read_name already has pre-corrected cb & umi # log.info("Saving correction information.") # ra.create_readname_cb_umi_mapping( # read_names, args.output_prefix + "_correction.csv.gz" # ) # Summary sections # create the sections for the summary object sections += [ Section.from_cell_barcode_correction( ra, "cell_barcode_correction.html"), Section.from_rmt_correction(ra, "rmt_correction.html"), Section.from_resolve_multiple_alignments( mm_results, "multialignment.html"), ] # create a dictionary to store output parameters mini_summary_d = dict() # filter non-cells log.info("Creating counts matrix.") sp_reads, sp_mols = ra.to_count_matrix(sparse_frame=True, genes_to_symbols=args.index + "annotations.gtf") # generate 10x compatible count matrix log.info("Creating 10x compatible counts matrix.") ra.to_10x_count_matrix(genes_to_symbols=args.index + "annotations.gtf") # Save sparse matrices log.info("Saving sparse matrices") scipy.io.mmwrite(args.output_prefix + "_sparse_read_counts.mtx", sp_reads.data) scipy.io.mmwrite(args.output_prefix + "_sparse_molecule_counts.mtx", sp_mols.data) # Indices df = np.array([np.arange(sp_reads.shape[0]), sp_reads.index]).T np.savetxt( args.output_prefix + "_sparse_counts_barcodes.csv", df, fmt="%d", delimiter=",", ) # Columns df = np.array([np.arange(sp_reads.shape[1]), sp_reads.columns]).T np.savetxt(args.output_prefix + "_sparse_counts_genes.csv", df, fmt="%s", delimiter=",") log.info("Creating filtered counts matrix.") cell_filter_figure = args.output_prefix + "_cell_filters.png" # By pass low count filter for mars seq ( sp_csv, total_molecules, molecules_lost, cells_lost, cell_description, ) = filter.create_filtered_dense_count_matrix( sp_mols, sp_reads, mini_summary_d, plot=True, figname=cell_filter_figure, filter_low_count=platform.filter_low_count, filter_mitochondrial_rna=args.filter_mitochondrial_rna, filter_low_coverage=args.filter_low_coverage, filter_low_gene_abundance=args.filter_low_gene_abundance, ) # Output files files = [ cell_filter_figure, args.output_prefix + ".h5", args.output_prefix + "_sparse_read_counts.mtx", args.output_prefix + "_sparse_molecule_counts.mtx", args.output_prefix + "_sparse_counts_barcodes.csv", args.output_prefix + "_sparse_counts_genes.csv", "raw_feature_bc_matrix/matrix.mtx.gz", "raw_feature_bc_matrix/barcodes.tsv.gz", "raw_feature_bc_matrix/features.tsv.gz", ] if os.path.exists(args.output_prefix + "_cb-correction.csv.gz"): files.append(args.output_prefix + "_cb-correction.csv.gz") if os.path.exists(args.output_prefix + "_umi-correction.csv.gz"): files.append(args.output_prefix + "_umi-correction.csv.gz") # Summary sections # create the sections for the summary object sections += [ Section.from_cell_filtering(cell_filter_figure, "cell_filtering.html"), Section.from_run_time(args.log_name, "seqc_log.html"), ] # get alignment summary if os.path.isfile(output_dir + "/alignments/Log.final.out"): os.rename( output_dir + "/alignments/Log.final.out", args.output_prefix + "_alignment_summary.txt", ) # Upload files and summary sections files += [args.output_prefix + "_alignment_summary.txt"] sections.insert( 0, Section.from_alignment_summary( args.output_prefix + "_alignment_summary.txt", "alignment_summary.html", ), ) cell_size_figure = args.output_prefix + "_cell_size_distribution.png" index_section = Section.from_final_matrix(sp_csv, cell_size_figure, "cell_distribution.html") seqc_summary = Summary(args.output_prefix + "_summary", sections, index_section) seqc_summary.prepare_archive() seqc_summary.import_image(cell_filter_figure) seqc_summary.import_image(cell_size_figure) seqc_summary.render() # create a .tar.gz with `test_summary/*` summary_archive = seqc_summary.compress_archive() files += [summary_archive] # Create a mini summary section alignment_summary_file = args.output_prefix + "_alignment_summary.txt" seqc_mini_summary = MiniSummary( output_dir, output_prefix, mini_summary_d, alignment_summary_file, cell_filter_figure, cell_size_figure, ) seqc_mini_summary.compute_summary_fields(ra, sp_csv) seqc_mini_summary_json, seqc_mini_summary_pdf = seqc_mini_summary.render( ) files += [seqc_mini_summary_json, seqc_mini_summary_pdf] # Running MAST for differential analysis # file storing the list of differentially expressed genes for each cluster de_gene_list_file = run_mast( seqc_mini_summary.get_counts_filtered(), seqc_mini_summary.get_clustering_result(), args.output_prefix, ) files += [de_gene_list_file] # adding the cluster column and write down gene-cell count matrix dense_csv = args.output_prefix + "_dense.csv" sp_csv.insert(loc=0, column="CLUSTER", value=seqc_mini_summary.get_clustering_result()) sp_csv.to_csv(dense_csv) files += [dense_csv] if args.upload_prefix: # Upload count matrices files, logs, and return bucket, key = io.S3.split_link(args.upload_prefix) for item in files: try: ec2.Retry(retries=5)(io.S3.upload_file)(item, bucket, key) item_name = item.split("/")[-1] log.info('Successfully uploaded %s to "%s%s".' % (item, args.upload_prefix, item_name)) except FileNotFoundError: log.notify( "Item %s was not found! Continuing with upload..." % item) if manage_merged: manage_merged.wait_until_complete() log.info('Successfully uploaded %s to "%s"' % (args.merged_fastq, args.upload_prefix)) if manage_bamfile: manage_bamfile.wait_until_complete() log.info('Successfully uploaded %s to "%s"' % (args.alignment_file, args.upload_prefix)) log.info("SEQC run complete.") end_run_time = pendulum.now() running_time = end_run_time - start_run_time log.info("Running Time={}".format(running_time.in_words())) # upload logs if args.upload_prefix: # upload logs (seqc_log.txt, nohup.log) bucket, key = io.S3.split_link(args.upload_prefix) for item in [args.log_name, "./nohup.log"]: try: # Make a copy of the file with the output prefix copyfile(item, args.output_prefix + "_" + item) print(args.output_prefix + "_" + item) ec2.Retry(retries=5)(io.S3.upload_file)( args.output_prefix + "_" + item, bucket, key) log.info('Successfully uploaded %s to "%s".' % (item, args.upload_prefix)) except FileNotFoundError: log.notify( "Item %s was not found! Continuing with upload..." % item) else: # move the log to output directory movefile(args.log_name, args.output_prefix + "_" + args.log_name) # todo local test does not send this email if mutt: email_body = ( '<font face="Courier New, Courier, monospace">' "SEQC RUN COMPLETE.\n\n" "The run log has been attached to this email and " "results are now available in the S3 location you specified: " '"%s"\n\n' % args.upload_prefix) email_body = email_body.replace("\n", "<br>").replace("\t", " ") email_user(summary_archive, email_body, args.email)