Exemple #1
0
def simulation_example(path, zi=6., name=None):
    '''
    Sometimes, it's useful to start with a simulation object, and then load your snapshot
    '''
    import seren3

    sim = None  # init
    # Load our simulation
    if (name is not None):  # load by name
        sim = seren3.load(name)
    else:
        # Just init from the path
        sim = seren3.init(path)

    print sim

    # Now, lets load the snapshot which is closest to the desired redshift
    ioutput = sim.redshift(zi)  # output number
    snapshot = sim[ioutput]

    # There are also interpolators for age -> redshift and vise versa, for our chosen cosmology
    age_func = sim.age_func(zmax=100., zmin=0.)
    z_func = sim.redshift_func(zmax=100., zmin=0.)

    age_of_universe = age_func(snapshot.z)
    redshift = z_func(age_of_universe)

    print snapshot.z, redshift, age_of_universe
Exemple #2
0
def plot_RT2_panels(**kwargs):
    import seren3

    sim = seren3.load("RT2_nohm")
    ioutputs = [106, 100, 90, 80, 70, 60]

    plot_panels(sim, ioutputs, 2, 3, **kwargs)
Exemple #3
0
def _tmp_2():
    import seren3

    sim_names = ["RT2_nohm", "RT5_nohm"]
    sims = [seren3.load(n) for n in sim_names]
    ioutputs = [42, 48, 60, 70, 80, 90, 100, 106]

    ppaths = ["%s/pickle/" % sim.path for sim in sims]
    cols = ["r", "b"]

    plot_Mc_var(sims, [ioutputs, ioutputs], ppaths, sim_names, cols, False, **kwargs)
Exemple #4
0
def plot_Mc_z_xHII_by_names(simnames,
                            labels,
                            colours,
                            NN,
                            fix_alpha=False,
                            **kwargs):
    import seren3
    sims = [seren3.load(name) for name in simnames]

    ioutputs = [[42, 48, 60, 70, 80, 90, 100, 106] for n in simnames]

    pickle_paths = ["%s/pickle/" % sim.path for sim in sims]
    ann_paths = [sim.path for sim in sims]

    plot_Mc_z_xHII(sims, ioutputs, pickle_paths, ann_paths, labels, \
            colours, NN, fix_alpha=False, **kwargs)
Exemple #5
0
# coding: utf-8

# In[39]:

import seren3

iout = 108
# sim = seren3.load("RT2")
sin_sim = seren3.load("BPASS_SIN")
bin_sim = seren3.load("BPASS_BIN")

sin_snap = sin_sim[iout]
bin_snap = bin_sim[iout]
cosmo = sin_snap.cosmo

import matplotlib
import matplotlib.pylab as plt
from seren3.analysis.plots import fit_scatter, fit_median

nbins = 5

# In[60]:

import numpy as np
import pickle
import random
from seren3.scripts.mpi import write_fesc_hid_dict


def load_fesc(snapshot):
Exemple #6
0
import seren3
iout = 108
# sim = seren3.load("RT2")
sin_sim = seren3.load("2Mpc_BPASS_SIN")
bin_sim = seren3.load("2Mpc_BPASS_BIN")

sin_snap = sin_sim[iout]
bin_snap = bin_sim[iout]
cosmo = sin_snap.cosmo

import matplotlib
import matplotlib.pylab as plt
from seren3.analysis.plots import fit_scatter, fit_median
nbins = 5

# In[60]:

import numpy as np
import pickle
import random
from seren3.scripts.mpi import write_fesc_hid_dict


def load_fesc(snapshot):

    db = write_fesc_hid_dict.load_db(snapshot.path, snapshot.ioutput)
    hids = db.keys()

    mvir = np.zeros(len(hids))
    fesc = np.zeros(len(hids))
    nphotons = np.zeros(len(hids))
Exemple #7
0
def test2(sim_labels, the_mass_bins=[7., 8., 9., 10.], **kwargs):
    import numpy as np
    import matplotlib.pylab as plt
    from seren3.array import SimArray
    from pymses.utils import constants as C
    import matplotlib.gridspec as gridspec

    import seren3

    sim1 = seren3.load("RT2_nohm")
    sim2 = seren3.load("RAMSES")
    snap1 = sim1[106]
    snap2 = sim2[93]

    info = snap1.info

    cols = None
    if "cols" not in kwargs:
        from seren3.utils import plot_utils
        cols = plot_utils.ncols(len(the_mass_bins),
                                cmap=kwargs.pop("cmap", "Set1"))[::-1]
        # cols = plot_utils.ncols(2, cmap=kwargs.pop("cmap", "Set1"))[::-1]
    else:
        cols = kwargs.pop("cols")

    z = (1. / info["aexp"]) - 1.

    fig = plt.figure(figsize=(10, 8))
    gs = gridspec.GridSpec(4, 9, wspace=0., hspace=0.)

    ax1 = fig.add_subplot(gs[1:-1, :4])
    ax2 = fig.add_subplot(gs[:1, :4], sharex=ax1)

    axs = np.array([ax1, ax2])

    nbins = 7

    ax = ax1

    binned_cdf1 = plot(snap1.path,
                       snap1.ioutput,
                       "%s/pickle/" % snap1.path,
                       "nHI",
                       ax=None,
                       nbins=nbins)
    binned_cdf2 = plot(snap2.path,
                       snap2.ioutput,
                       "%s/pickle/" % snap2.path,
                       "nHI",
                       ax=None,
                       nbins=nbins)

    text_pos = (7.2, 0.1)
    text = 'z = %1.2f' % z
    # ax.text(text_pos[0], text_pos[1], text, color="k", size=18)

    # for bcdf, ls in zip([binned_cdf1, binned_cdf2], ["-", "--"]):
    #     label = "All"
    #     x,y,std,stderr,n = bcdf["all"]
    #     e = ax.errorbar(x, y, yerr=std, color="k", label=label,\
    #         fmt="o", markerfacecolor="w", mec='k', capsize=2, capthick=2, elinewidth=2, linestyle=ls, linewidth=2.)

    for bcdf, ls in zip([binned_cdf1, binned_cdf2], ["-", "--"]):
        for ibin, c in zip(range(len(the_mass_bins)), cols):
            # for ibin, c in zip([0, len(the_mass_bins)-1], cols):
            x, y, std, stderr, n = bcdf[ibin]

            if ibin == len(the_mass_bins) - 1:
                upper = r"$\infty$"
            else:
                upper = "%i" % the_mass_bins[ibin + 1]
            lower = "%i" % the_mass_bins[ibin]

            label = "[%s, %s)" % (lower, upper)

            if (ls == "--"):
                label = None

            upper_err = []
            lower_err = []
            for i in range(len(y)):
                ue = 0.
                le = 0.
                if (y[i] + std[i] > 1):
                    ue = 1. - y[i]
                else:
                    ue = std[i]

                if (y[i] - std[i] < 0):
                    le = y[i]
                else:
                    le = std[i]

                upper_err.append(ue)
                lower_err.append(le)

            yerr = [lower_err, upper_err]

            e = ax.errorbar(x, y, yerr=yerr, color=c, label=label,\
                fmt="o", markerfacecolor=c, mec='k', capsize=2, capthick=2, elinewidth=2, linestyle=ls, linewidth=2.)

    for sl, ls in zip(sim_labels, ["-", "--"]):
        ax.plot([2, 4], [-100, -100],
                linewidth=2.,
                linestyle=ls,
                color="k",
                label=sl)

    # ax.legend(prop={"size":18}, loc="lower right")
    ax.set_ylim(-0.05, 1.2)

    ax = ax2

    linestyles = ["-", "--", "-.", ":"]

    for ibin, c, ls in zip(range(len(the_mass_bins)), cols, linestyles):
        # for ibin, c, ls in zip([0, len(the_mass_bins)-1], cols, linestyles):
        x1, y1, std1, stderr1, n1 = binned_cdf1[ibin]
        x2, y2, std2, stderr2, n2 = binned_cdf2[ibin]

        # ydiv = y1/y2
        ydiv = y1 - y2

        # error_prop = np.abs(ydiv) * np.sqrt( (std1/y1)**2 + (std2/y2)**2 )
        error_prop = np.sqrt((std1)**2 + (std2)**2)
        print ibin, error_prop

        e = ax.errorbar(x1, ydiv, yerr=error_prop, color=c,\
            fmt="o", markerfacecolor=c, mec='k', capsize=2, capthick=2, elinewidth=2, linestyle=ls, linewidth=2.)

    axs[0].set_xlabel(r"log$_{10}$ n$_{\mathrm{HI}}$ [m$^{-3}$]")
    # axs[0].set_xlabel(r"log$_{10}$ T [K]")
    axs[0].set_ylabel(r"CDF")
    axs[1].set_ylabel(r"$\Delta$ CDF")

    plt.setp(ax2.get_xticklabels(), visible=False)

    # ax = axs[0]
    # leg = ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15),
    #   fancybox=True, shadow=False, ncol=3, prop={"size":18})
    # leg.set_title(r"log$_{10}$(Mvir) [M$_{\odot}$/h]", prop = {'size':'x-large'})

    n_star = SimArray(info["n_star"].express(C.H_cc),
                      "cm**-3").in_units("m**-3")

    for axi in axs.flatten():
        axi.vlines(np.log10(n_star), -1, 2, color='k', linestyle='-.')
        # axi.vlines(np.log10(2e4), -5, 5, color='k', linestyle='-.')

    axs[1].set_ylim(-0.2, 1.3)
    # axs[1].set_ylim(0.2, -1.3)

    ##################################################################################

    ax1 = fig.add_subplot(gs[1:-1, 5:])
    ax2 = fig.add_subplot(gs[:1, 5:], sharex=ax1)

    axs = np.array([ax1, ax2])

    ax = ax1

    binned_cdf1 = plot(snap1.path,
                       snap1.ioutput,
                       "%s/pickle/" % snap1.path,
                       "T2_minus_Tpoly",
                       ax=None,
                       nbins=nbins)
    binned_cdf2 = plot(snap2.path,
                       snap2.ioutput,
                       "%s/pickle/" % snap2.path,
                       "T2_minus_Tpoly",
                       ax=None,
                       nbins=nbins)

    text_pos = (7.2, 0.1)
    text = 'z = %1.2f' % z
    # ax.text(text_pos[0], text_pos[1], text, color="k", size=18)

    # for bcdf, ls in zip([binned_cdf1, binned_cdf2], ["-", "--"]):
    #     label = "All"
    #     x,y,std,stderr,n = bcdf["all"]
    #     e = ax.errorbar(x, y, yerr=std, color="k", label=label,\
    #         fmt="o", markerfacecolor="w", mec='k', capsize=2, capthick=2, elinewidth=2, linestyle=ls, linewidth=2.)

    for bcdf, ls in zip([binned_cdf1, binned_cdf2], ["-", "--"]):
        for ibin, c in zip(range(len(the_mass_bins)), cols):
            # for ibin, c in zip([0, len(the_mass_bins)-1], cols):
            x, y, std, stderr, n = bcdf[ibin]

            if ibin == len(the_mass_bins) - 1:
                upper = r"$\infty$"
            else:
                upper = "%i" % the_mass_bins[ibin + 1]
            lower = "%i" % the_mass_bins[ibin]

            label = "[%s, %s)" % (lower, upper)

            if (ls == "--"):
                label = None

            upper_err = []
            lower_err = []
            for i in range(len(y)):
                ue = 0.
                le = 0.
                if (y[i] + std[i] > 1):
                    ue = 1. - y[i]
                else:
                    ue = std[i]

                if (y[i] - std[i] < 0):
                    le = y[i]
                else:
                    le = std[i]

                upper_err.append(ue)
                lower_err.append(le)

            yerr = [lower_err, upper_err]

            e = ax.errorbar(x, y, yerr=yerr, color=c, label=label,\
                fmt="o", markerfacecolor=c, mec='k', capsize=2, capthick=2, elinewidth=2, linestyle=ls, linewidth=2.)

    for sl, ls in zip(sim_labels, ["-", "--"]):
        ax.plot([2, 4], [-100, -100],
                linewidth=2.,
                linestyle=ls,
                color="k",
                label=sl)

    # ax.legend(prop={"size":18}, loc="lower right")
    ax.set_ylim(-0.05, 1.2)

    ax = ax2

    linestyles = ["-", "--", "-.", ":"]

    for ibin, c, ls in zip(range(len(the_mass_bins)), cols, linestyles):
        # for ibin, c, ls in zip([0, len(the_mass_bins)-1], cols, linestyles):
        x1, y1, std1, stderr1, n1 = binned_cdf1[ibin]
        x2, y2, std2, stderr2, n2 = binned_cdf2[ibin]

        # ydiv = y1/y2
        ydiv = y1 - y2

        # error_prop = np.abs(ydiv) * np.sqrt( (std1/y1)**2 + (std2/y2)**2 )
        error_prop = np.sqrt((std1)**2 + (std2)**2)
        print ibin, error_prop

        e = ax.errorbar(x1, ydiv, yerr=error_prop, color=c,\
            fmt="o", markerfacecolor=c, mec='k', capsize=2, capthick=2, elinewidth=2, linestyle=ls, linewidth=2.)

    # axs[0].set_xlabel(r"log$_{10}$ n$_{\mathrm{HI}}$ [m$^{-3}$]")
    axs[0].set_xlabel(r"log$_{10}$ T - T$_{\mathrm{J}}$ [K/$\mu$]")
    # axs[0].set_ylabel(r"CDF")
    # axs[1].set_ylabel(r"$\Delta$ CDF")

    plt.setp(ax2.get_xticklabels(), visible=False)

    ax = axs[0]
    leg = ax.legend(loc='upper center',
                    bbox_to_anchor=(-0.15, -0.2),
                    fancybox=True,
                    shadow=False,
                    ncol=3,
                    prop={"size": 18})
    leg.set_title(r"log$_{10}$(Mvir) [M$_{\odot}$/h]  :  z = %1.2f" % snap1.z,
                  prop={'size': 'x-large'})

    n_star = SimArray(info["n_star"].express(C.H_cc),
                      "cm**-3").in_units("m**-3")

    for axi in axs.flatten():
        # axi.vlines(np.log10(n_star), -1, 2, color='k', linestyle='-.')
        axi.vlines(np.log10(2e4), -5, 5, color='k', linestyle='-.')

    # axs[1].set_ylim(-0.2, 1.3)
    axs[1].set_ylim(0.2, -1.3)

    # plt.yscale("log")
    # plt.tight_layout()
    plt.savefig("/home/ds381/rt2_hd_cdf_nHI_T_z6_15.pdf", format="pdf")
    plt.show()
Exemple #8
0
def plot_fb_panels(sim_name,
                   ioutputs,
                   sim_label,
                   weight="mw",
                   weight_label="M",
                   **kwargs):
    import numpy as np
    import seren3
    import matplotlib.pylab as plt
    from seren3.analysis.plots import fit_scatter

    fig, axes = plt.subplots(nrows=4,
                             ncols=len(ioutputs),
                             sharex=True,
                             sharey=True,
                             figsize=(10, 10))
    fig.subplots_adjust(hspace=0.05)
    fig.subplots_adjust(wspace=0.05)

    sim = seren3.load(sim_name)

    for i in range(len(ioutputs)):
        # ioutput = sim.redshift(zi)
        ioutput = ioutputs[i]
        snapshot = sim[ioutput]

        pickle_path = "%s/pickle/" % snapshot.path

        axs = axes[:, i]

        axs[0].set_title("z = %1.2f" % (snapshot.z))

        log_mvir, fb, ftidal, xHII, T, T_U, pid = neural_net2.load_training_arrays(
            snapshot, pickle_path=pickle_path, weight=weight)
        cosmo = snapshot.cosmo
        cosmic_mean_b = cosmo["omega_b_0"] / cosmo["omega_M_0"]

        y_min = 0.
        y_max = (fb / cosmic_mean_b).max()

        fb_cosmic_mean = fb / cosmic_mean_b

        mvir = 10**log_mvir

        log_xHI = np.log10(1. - xHII)
        log_ftidal = np.log10(ftidal)

        bc, mean, std, sterr = fit_scatter(log_mvir,
                                           fb_cosmic_mean,
                                           nbins=10,
                                           ret_sterr=True)

        def _plot(mvir, fb, carr, ax, **kwargs):
            ax.errorbar(10**bc,
                        mean,
                        yerr=std,
                        linewidth=3.,
                        color="k",
                        linestyle="--")
            return ax.scatter(mvir, fb, c=carr, **kwargs)

        labels = [r"log$_{10} \langle F_{\mathrm{tidal}} \rangle_{t_{\mathrm{dyn}}}$",\
                 r"$\langle x_{\mathrm{HII}} \rangle_{\mathrm{%s}}$" % weight_label,\
                 # r"log$_{10} \langle x_{\mathrm{HII}} \rangle_{\mathrm{%s}}$" % weight_label,\
                 r"log$_{10} \langle T \rangle_{\mathrm{%s}}$/$T_{\mathrm{vir}}$" % weight_label ,\
                 r"log$_{10}$ T/|U|"]

        count = 0
        cbar = None
        for ax, carr, lab in zip(axs.flatten(),
                                 [np.log10(ftidal), xHII, T, T_U], labels):
            ax.errorbar(10**bc,
                        mean,
                        yerr=std,
                        linewidth=1.5,
                        color="k",
                        linestyle="--")
            plt.xlim(5e6, 1.5e10)
            sp = None
            if (count == 0):
                sp = ax.scatter(mvir,
                                fb_cosmic_mean,
                                c=carr,
                                vmin=-1,
                                vmax=4,
                                **kwargs)
            if (count == 2):
                sp = ax.scatter(mvir,
                                fb_cosmic_mean,
                                c=carr,
                                vmin=-0.5,
                                vmax=1.5,
                                **kwargs)
            else:
                sp = ax.scatter(mvir, fb_cosmic_mean, c=carr, **kwargs)

            if (count == 1):
                cbar = fig.colorbar(sp, ax=ax, ticks=[1., 0.75, 0.5, 0.25, 0.])
            else:
                cbar = fig.colorbar(sp, ax=ax)
            if (i == len(ioutputs) - 1):
                cbar.set_label(lab)

            # ax.set_xlabel(r"log$_{10}$ M$_{\mathrm{vir}}$ [M$_{\odot}$/h]")

            if (i == 0):
                ax.set_ylabel(
                    r"f$_{\mathrm{b}}$[$\Omega_{\mathrm{b}}$/$\Omega_{\mathrm{M}}$]"
                )

            ax.set_xscale("log")
            count += 1

            ax.set_ylim(y_min, y_max)

        axs[-1].set_xlabel(r"M$_{\mathrm{vir}}$ [M$_{\odot}$/h]")

    for ax in axes.flatten():
        ax.set_xlim(5e6, 1.5e10)

    fig.tight_layout()