def api_explorer_sentences_list(): around_word = 'word' in request.form if only_queries_reddit(request.form): start_date, end_date = parse_query_dates(request.form) provider = RedditPushshiftProvider() results = provider.samples(query=request.args['q'], start_date=start_date, end_date=end_date, subreddits=NEWS_SUBREDDITS) results = [{ 'sentence': r['title'], 'publish_date': r['publish_date'], 'story': r, } for r in results] else: solr_q, solr_fq = parse_query_with_keywords(request.form) # so we can support large samples or just a few to show rows = int(request.form['rows']) if 'rows' in request.form else 10 results = apicache.sentence_list(solr_q, solr_fq, rows=rows, include_stories=(not around_word)) if around_word: word = request.form['word'] results = [ _sentence_fragment_around(word, s['sentence']) for s in results if s['sentence'] is not None ] results = [s for s in results if s is not None] return jsonify({'results': results})
def explorer_story_count_csv(): filename = 'total-story-count' data = request.form if 'searchId' in data: queries = SAMPLE_SEARCHES[data['searchId']]['queries'] else: queries = json.loads(data['queries']) label = " ".join([q['label'] for q in queries]) filename = file_name_for_download(label, filename) # now compute total attention for all results story_count_results = [] for q in queries: if (len(q['collections']) == 0) and only_queries_reddit(q['sources']): start_date, end_date = parse_query_dates(q) story_counts = pushshift.reddit_submission_normalized_and_split_story_count(query=q['q'], start_date=start_date, end_date=end_date, subreddits=pushshift.NEWS_SUBREDDITS) else: solr_q, solr_fq = parse_query_with_keywords(q) solr_open_query = concatenate_query_for_solr(solr_seed_query='*', media_ids=q['sources'], tags_ids=q['collections']) story_counts = apicache.normalized_and_story_count(solr_q, solr_fq, solr_open_query) story_count_results.append({ 'query': q['label'], 'matching_stories': story_counts['total'], 'total_stories': story_counts['normalized_total'], 'ratio': float(story_counts['total']) / float(story_counts['normalized_total']) }) props = ['query', 'matching_stories', 'total_stories', 'ratio'] return csv.stream_response(story_count_results, props, filename)
def api_explorer_story_sample(): if only_queries_reddit(request.form): start_date, end_date = parse_query_dates(request.form) provider = RedditPushshiftProvider() results = provider.sample(query=request.form['q'], start_date=start_date, end_date=end_date, subreddits=NEWS_SUBREDDITS) else: solr_q, solr_fq = parse_query_with_keywords(request.form) results = base_cache.story_list(None, solr_q, solr_fq, rows=SAMPLE_STORY_COUNT, sort=MediaCloud.SORT_RANDOM) for story in results: # add in media info so we can show it to user if they click into the drill-down story["media"] = base_cache.media(story["media_id"]) return jsonify({"results": results})
def api_explorer_story_split_count(): start_date, end_date = parse_query_dates(request.form) if only_queries_reddit(request.form): provider = RedditPushshiftProvider() results = provider.normalized_count_over_time(query=request.form['q'], start_date=start_date, end_date=end_date, subreddits=NEWS_SUBREDDITS) else: # get specific stories by keyword solr_q, _solr_fq = parse_query_with_keywords(request.form) # get all the stories (no keyword) so we can support normalization solr_open_query = concatenate_query_for_solr(solr_seed_query='*', media_ids=request.form['sources'], tags_ids=request.form['collections'], custom_ids=request.form['searches']) results = apicache.normalized_and_story_split_count(solr_q, solr_open_query, start_date, end_date) return jsonify({'results': results})
def api_explorer_combined_story_split_count_csv(): filename = 'stories-over-time' data = request.form queries = json.loads(data['queries']) label = " ".join([q['label'] for q in queries]) filename = file_name_for_download(label, filename) # now compute total attention for all results story_count_results = [] for q in queries: start_date, end_date = parse_query_dates(q) if (len(q['collections']) == 0) and only_queries_reddit(q['sources']): provider = RedditPushshiftProvider() story_counts = provider.normalized_count_over_time( query=q['q'], start_date=start_date, end_date=end_date, subreddits=NEWS_SUBREDDITS) else: solr_q, solr_fq = parse_query_with_keywords(q) solr_open_query = concatenate_query_for_solr( solr_seed_query='*', media_ids=q['sources'], tags_ids=q['collections'], custom_ids=q['searches']) story_counts = apicache.normalized_and_story_split_count( solr_q, solr_open_query, start_date, end_date) story_count_results.append({ 'label': q['label'], 'by_date': story_counts['counts'], }) # now combine them by date data = [] dates = [d['date'] for d in story_count_results[0]['by_date']] for idx in range(len(dates)): row = {'date': dates[idx]} for q in story_count_results: row[q['label'] + '-count'] = q['by_date'][idx]['count'] row[q['label'] + '-total_count'] = q['by_date'][idx]['total_count'] row[q['label'] + '-ratio'] = q['by_date'][idx]['ratio'] data.append(row) props = ['date'] + [q['label'] + '-count' for q in queries] + [ q['label'] + '-total_count' for q in queries ] + [q['label'] + '-ratio' for q in queries] return csv.stream_response(data, props, filename)
def api_explorer_story_split_count(): search_id = int(request.args['search_id']) if 'search_id' in request.args else None start_date, end_date = parse_query_dates(request.args) if only_queries_reddit(request.args): results = pushshift.reddit_submission_normalized_and_split_story_count(query=request.args['q'], start_date=start_date, end_date=end_date, subreddits=pushshift.NEWS_SUBREDDITS) else: # get specific stories by keyword if isinstance(search_id, int) and search_id not in [None, -1]: solr_q, solr_fq = parse_as_sample(search_id, request.args['index']) else: solr_q, solr_fq = parse_query_with_keywords(request.args) # get all the stories (no keyword) so we can support normalization solr_open_query = concatenate_query_for_solr(solr_seed_query='*', media_ids=request.args['sources'], tags_ids=request.args['collections']) results = apicache.normalized_and_story_split_count(solr_q, solr_open_query, start_date, end_date) return jsonify({'results': results})
def explorer_stories_csv(): logger.info(flask_login.current_user.name) filename = 'all-story-urls' data = request.form q = json.loads(data['q']) filename = file_name_for_download(q['label'], filename) # now compute total attention for all results if (len(q['collections']) == 0) and only_queries_reddit(q['sources']): start_date, end_date = parse_query_dates(q) provider = RedditPushshiftProvider() stories = provider.sample(query=q['q'], limit=2000, start_date=start_date, end_date=end_date, subreddits=NEWS_SUBREDDITS) props = ['stories_id', 'subreddit', 'publish_date', 'score', 'last_updated', 'title', 'url', 'full_link', 'author'] return csv.stream_response(stories, props, filename) else: solr_q, solr_fq = parse_query_with_keywords(q) # now page through all the stories and download them return _stream_story_list_csv(filename, solr_q, solr_fq)
def api_explorer_story_split_count_csv(): filename = 'stories-over-time' data = request.form q = json.loads(data['q']) filename = file_name_for_download(q['label'], filename) # now compute total attention for all results start_date, end_date = parse_query_dates(q) if (len(q['collections']) == 0) and only_queries_reddit(q['sources']): provider = RedditPushshiftProvider() story_counts = provider.normalized_count_over_time(query=q['q'], start_date=start_date, end_date=end_date, subreddits=NEWS_SUBREDDITS) else: solr_q, _solr_fq = parse_query_with_keywords(q) solr_open_query = concatenate_query_for_solr(solr_seed_query='*', media_ids=q['sources'], tags_ids=q['collections'], custom_ids=q['searches']) story_counts = apicache.normalized_and_story_split_count(solr_q, solr_open_query, start_date, end_date) props = ['date', 'count', 'total_count', 'ratio'] return csv.stream_response(story_counts['counts'], props, filename)
def api_explorer_story_split_count_csv(): filename = 'stories-over-time' data = request.form if 'searchId' in data: filename = filename # don't have this info + current_query['q'] q = SAMPLE_SEARCHES[data['index']] else: q = json.loads(data['q']) filename = file_name_for_download(q['label'], filename) # now compute total attention for all results start_date, end_date = parse_query_dates(q) if (len(q['collections']) == 0) and only_queries_reddit(q['sources']): story_counts = pushshift.reddit_submission_normalized_and_split_story_count(query=q['q'], start_date=start_date, end_date=end_date, subreddits=pushshift.NEWS_SUBREDDITS) else: solr_q, solr_fq = parse_query_with_keywords(q) solr_open_query = concatenate_query_for_solr(solr_seed_query='*', media_ids=q['sources'], tags_ids=q['collections']) story_counts = apicache.normalized_and_story_split_count(solr_q, solr_open_query, start_date, end_date) props = ['date', 'count', 'total_count', 'ratio'] return csv.stream_response(story_counts['counts'], props, filename)