width = np.random.uniform(0.1, 2)
        pnum = 10
        amplitude = np.random.uniform(level * 2 / 3, level)

        signal = stg.generate(ts,
                              fs,
                              stg.constant_path(f_start=fs[start_index],
                                                drift_rate=drift_rate),
                              stg.periodic_gaussian_t_profile(
                                  period, phase, sigma, pulse_dir, width, pnum,
                                  amplitude, level),
                              stg.gaussian_f_profile(width=line_width),
                              stg.constant_bp_profile(level=1.0),
                              integrate=True)

        signal = stg.normalize(stg.inject_noise(signal),
                               cols=128,
                               exclude=0.2,
                               use_median=False)

        plt.imsave(output_fn, signal)
        print('Saved %s of %s scintillated data for %s' % (i + 1, num, name))

    for i in range(num):

        output_fn = '/datax/scratch/bbrzycki/data/%s/%s/%s/%s_%04d.png' % (
            dir, name, 'constant', 'constant', i)

        start_index = np.random.randint(0, fchans)
        drift_rate = np.random.uniform(-start_index * df / (tsamp * tchans),
                                       (fchans - 1 - start_index) * df /
Exemple #2
0
        except OSError as e:
            if e.errno != errno.EEXIST:
                raise

    # Make csv to save data
    csv_fn = '%s/%s' % (prefix, 'labels.csv')

    # Generate training and validation data!
    datasets = [('train', 5000), ('validation', 500)]

    with open(csv_fn, 'w') as f:
        writer = csv.writer(f)
        for label in labels:
            for process, num in datasets:
                for i in range(num):
                    output_prefix = '%s/%s/%s/%s_%04d' % (prefix, process, label, label, i,)

                    ##############################################################################
                    # Generate signals -- these parameters should be tuned to whatever makes sense
                    signal, [start_index, drift_rate, line_width, level, spread] = generate_training0_signal(label=label)

                    # Normalize and write data
                    normalized_signal = stg.normalize(stg.inject_noise(signal), cols = 128, exclude = 0.2, use_median=False)

                    plt.imsave(output_prefix + '.png', normalized_signal)
                    np.save(output_prefix + '.npy', normalized_signal)

                    writer.writerow([output_prefix, start_index, drift_rate, line_width, level, spread])
                    print([output_prefix, start_index, drift_rate, line_width, level, spread])

                    print('Saved %s of %s signal data for %s, %s' % (i + 1, num, label, process))