def main(): try: validate_config(Config) except ConfigurationError as e: sys.stdout.write(str(e)) sys.exit(1) setup_logging() parser = create_parser() args = parser.parse_args() if args.command == 'init': initialize_dialogflow_intents() elif args.command == 'run': if args.platform == 'telegram': run_telegram_bot() elif args.platform == 'vk': run_vk_bot() else: sys.stdout.write('Unknown command. Please refer for help.') sys.exit(1) else: sys.stdout.write('Unknown command. Please refer for help.') sys.exit(1)
def create_app(name=None): setup_logging() app = Flask(name or __name__) setup_routes(app) app.debug = False init_db() init_data() schedule_job() return app
def create_app(name=None): setup_logging() app = Flask(name or 'App', template_folder=os.path.join(SOURCE_ROOT, 'templates')) app.config.root_path = os.path.dirname(os.path.abspath(__file__)) app.config.from_pyfile('settings.py') load_api(app) load_moudle(app) #CORS(apps) return app
def main(): parser = ArgumentParser(description="Train and evaluate resnet model.") parser.add_argument("--params", help="Path to file to save params", default="./data/cdiscount/model_params.torch") parser.add_argument("--train", action='store_true', help="Train model? Otherwise, will test") args = parser.parse_args() setup_logging() if args.train: train(args.params) else: accuracy = test(args.params) print("Accuracy: {:.2f}%".format(accuracy * 100))
#!/usr/bin/env python # -*- coding: utf-8 -*- # import os,sys,inspect # currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) # parentdir = os.path.dirname(currentdir) # sys.path.insert(0,parentdir) # Setup Logging from settings import setup_logging from logging import getLogger setup_logging() logger = getLogger('dataset') from analyzer import TweetPreprocessor, TweetTokenizer from feature_extraction import make_text_extractor, Bunch from csv import reader from collections import namedtuple import numpy as np import scipy as sp import csv import yaml class SMS(namedtuple('SMS', ['sms_id_str', 'user_id_str', 'label', 'text'])): def _asdict(self): 'Return a new OrderedDict which maps field names to their values' return dict(zip(self._fields, self))
""" FUNCTIONS TO PLOT OUT LIGHT CURVES/APERTURE OF STAR """ from utils import get_sub_kwargs, clip_array, build_arr_n_names, format_arr, is_n_bools from aperture import run_photometry, improve_aperture, get_aperture_center, \ calculate_better_aperture, model_background, make_background_mask from settings import setup_logging, mpl_setup logger = setup_logging() import os import csv import numpy as np from matplotlib import pyplot as plt from matplotlib import gridspec as gs from matplotlib.backends.backend_pdf import PdfPages def plot_data(target, count=0): """ creates plot of light curve and aperture for one target assumes already have right data before from target :return: matplotlib figure generated """ fig = plt.figure(figsize=(11, 8)) gs.GridSpec(3, 3) plt.subplot2grid((3, 3), (1, 2)) plt.title(target.kic, fontsize=20)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Setup Logging from settings import setup_logging from logging import getLogger setup_logging() logger = getLogger('eval') logger.info('importing packages...') # Import standard packages from time import time, sleep from pprint import pprint, pformat # Import 3rd-party packages import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix from sklearn.metrics.metrics import _check_clf_targets from sklearn.utils.multiclass import unique_labels from sklearn.cross_validation import KFold, StratifiedKFold, cross_val_score from sklearn.learning_curve import learning_curve from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC, LinearSVC from sklearn.neighbors import KNeighborsClassifier
def main(): settings.setup_logging() scrape_toysrus() scrape_well()
import settings from utils import get_nth_col from parse import table_api from mast import mast_api logger = settings.setup_logging() import kplr import numpy as np import ast class api(object): """ api to get necessary parameters from combined databases """ def __init__(self): self.sources = ["q1-17", "mast", "mast_table", "periodic", "nonperiodic", \ "lc_img", "lc_new", "lc_old"] self.updated_dir = settings.filename_stellar_params self.nonperiodic_dir = settings.filename_nonperiods self.periodic_dir = settings.filename_periods self.mast_table_dir = settings.filename_mast_table self.gaia_dir = settings.filename_gaia_table self.kic10_dir = settings.filename_kic10_table self.lc_img_dir = settings.filename_lc_img self.lc_new_dir = settings.filename_lc_new self.lc_old_dir = settings.filename_lc_old self.lc_obs_dir = settings.filename_lc_obs self.lc_var_dir = settings.filename_lc_var def get_params(self, kics, params, **neighbour_filters):