# # Copyright John Reid 2012, 2013 # """ Test background model. """ from setup_environment import init_test_env, logging init_test_env(__file__, level=logging.INFO) import os, sys, stempy, numpy # # Test parameters # Z_threshold = .73306 W = 11 fasta = os.path.join(os.path.dirname(__file__), 'fasta', 'random-seqs-10-100.fasta') log_pwm = numpy.array([ [-0.2186892 , -4.02535169, -1.82812711, -4.02535169], [-0.05505978, -4.02535169, -4.02535169, -4.02535169], [-1.46040233, -0.65805586, -1.46040233, -4.02535169], [-4.02535169, -0.05505978, -4.02535169, -4.02535169], [-4.02535169, -4.02535169, -4.02535169, -0.05505978], [-1.82812711, -2.41591378, -0.98082925, -0.98082925], [-0.52884413, -4.02535169, -1.19213835, -2.41591378], [-1.82812711, -4.02535169, -0.41443378, -1.82812711], [-1.82812711, -1.82812711, -0.41443378, -4.02535169], [-0.41443378, -1.19213835, -4.02535169, -4.02535169],
# # Copyright John Reid 2011, 2012, 2013 # """ Compare find instances to find best W-mers in terms of efficiency. """ from setup_environment import init_test_env, logging init_test_env(__file__) import stempy from cookbook.timer import Timer seed = 'ATAAAA' fasta = '/home/john/Data/MO-MK-EB/unique_MK.fasta.masked' #fasta = '/home/john/Data/MO-MK-EB/MO_MK_EB_shared.fasta.masked' options = stempy.get_default_options() W = options.min_w = options.max_w = len(seed) # load the sequences num_bases, seqs, ids, index = stempy.read_sequences(fasta, options) # create the data object with Timer(msg='build data'): data = stempy.Data(index, max_W=options.max_w) # get the background mm, freqs = stempy.create_markov_model_order_from_index_4(data.index, options.back_dist_prior)