Exemple #1
0
def plt_mtfluc(rom, tdir):
    import numpy as np
    import matplotlib.pyplot as plt
    import sys
    from myplot import plt_romcoef_in_t, plt_snapcoef_in_t, \
    plt_snap_minmax, plt_mean_in_t, add_std_in_t, plt_sample_mean_var
    sys.path.append('/Users/bigticket0501/Developer/PyMOR/postprocessing/')
    from snapshot import Snapshot
    import os

    setup_old.style(1)
    setup_old.text()

    sub_dir = os.path.join(tdir, 'mtfluc')
    checkdir(sub_dir)

    rom_params = {'c': 'b', 'marker': 'o'}
    rom_params['label'] = rom.info['method'].upper()
    xlabel = r'$N$'
    ylabel = r'$\langle T_{fluc} \rangle_s$'

    fig, ax = plt.subplots(1, squeeze=True, tight_layout=True)
    ax.set(ylabel=ylabel, xlabel=xlabel)
    ax.plot(rom.nbs, rom.mtfluc, **rom_params)
    mtfluc_fom = np.loadtxt('../qoi/tmtfluc')
    fom_params = {'c': 'k', 'marker': 'o', 'label': 'FOM'}
    ax.plot(rom.nbs, mtfluc_fom * np.ones(len(rom.nbs)), **fom_params)
    ax.legend(loc=0)

    fname1 = 'mtfluc'
    data = np.column_stack((rom.nbs, rom.mtfluc))
    output = os.path.join(sub_dir, fname1)
    if rom.info['method'] == 'l-rom':
        output += '_' + rom.info['perc']
    elif rom.info['method'] == 'l-rom-df':
        output += '_' + rom.info['fwidth']
    output += '.csv'
    np.savetxt(output, data, delimiter=',', header='N, mtfluc', comments="")
    output = os.path.join(sub_dir, 'mtfluc.png')
    fig.savefig(output)
    plt.close(fig)
Exemple #2
0
def plt_tke_in_t(rom, nb, tdir):
    import numpy as np
    import matplotlib.pyplot as plt
    import sys
    from myplot import plt_romcoef_in_t, plt_snapcoef_in_t, \
    plt_snap_minmax, plt_mean_in_t, add_std_in_t, plt_sample_mean_var
    sys.path.append('/Users/bigticket0501/Developer/PyMOR/postprocessing/')
    from snapshot import Snapshot
    import os

    setup_old.style(1)
    setup_old.text()

    sub_dir = os.path.join(tdir, 'tke')
    checkdir(sub_dir)

    K = rom.info['K']
    T0 = rom.info['T0']
    J0 = rom.info['J0']
    print(f'Information K: {K}, N: {nb}, T0: {T0}, J0: {J0}')

    rom_params = {'c': 'b', 'mfc': 'None'}
    rom_params['label'] = rom.info['method'].upper()
    xlabel = r'$t$'
    ylabel = 'tke' + r'$(t)$'

    fig, ax = plt.subplots(1, squeeze=True, tight_layout=True)
    ax.set(ylabel=ylabel, xlabel=xlabel)
    ax.semilogy(rom.tke[str(nb)]['t'], rom.tke[str(nb)]['tke'], **rom_params)
    ax.legend(loc='upper left',
              bbox_to_anchor=(0.0, 1.11),
              ncol=4,
              borderaxespad=0,
              frameon=False)
    output = os.path.join(sub_dir, 'tke_N' + str(nb) + '.png')
    fig.savefig(output)
    plt.close(fig)
Exemple #3
0
def plt_nu_1st_2nd(rom, tdir):
    import numpy as np
    import matplotlib.pyplot as plt
    import sys
    import pandas as pd
    sys.path.append('/Users/bigticket0501/Developer/PyMOR/postprocessing/')
    from snapshot import Snapshot
    import os
    import math

    setup_old.style(1)
    setup_old.text()

    sub_dir = os.path.join(tdir, 'nu')
    checkdir(sub_dir)

    # get the FOM data
    filename = './fom/nus_mom.csv'
    fom = pd.read_csv(filename).to_numpy()

    rom_params = {'c': 'b', 'marker': 'o'}
    rom_params['label'] = rom.info['method'].upper()
    xlabel = r'$N$'
    ylabel = r'$\langle Nu \rangle_g$'

    fig, ax = plt.subplots(1, squeeze=True, tight_layout=True)
    ax.set(ylabel=ylabel,
           xlabel=xlabel,
           title='Predicted Mean Nu vs. Truth Mean Nu')
    ax.plot(rom.nbs, rom.nus_ms, **rom_params)
    fom_params = {'c': 'k', 'marker': 'o', 'label': 'FOM'}
    ax.plot(rom.nbs, fom[0][0] * np.ones(len(rom.nbs)), '-o', **fom_params)
    ax.legend(loc=0)

    fname1 = 'mnu'
    data = np.column_stack((rom.nbs, rom.nus_ms))
    output = os.path.join(sub_dir, fname1)
    if rom.info['method'] == 'l-rom':
        output += '_' + rom.info['perc']
    elif rom.info['method'] == 'l-rom-df':
        output += '_' + rom.info['fwidth']
    output += '.csv'
    np.savetxt(output, data, delimiter=',', header='N, mnus', comments="")
    output = os.path.join(sub_dir, 'mnus.png')
    fig.savefig(output)
    plt.close(fig)

    rom_params = {'c': 'b', 'marker': 'o'}
    rom_params['label'] = rom.info['method'].upper()
    xlabel = r'$N$'
    ylabel = r'$Std(Nu)$'

    fig, ax = plt.subplots(1, squeeze=True, tight_layout=True)
    ax.set(ylabel=ylabel,
           xlabel=xlabel,
           title='Predicted Std(Nu) vs. Truth Std(Nu)')
    ax.plot(rom.nbs, rom.nus_sds, **rom_params)
    fom_params = {'c': 'k', 'marker': 'o', 'label': 'FOM'}
    ax.plot(rom.nbs, fom[0][1] * np.ones(len(rom.nbs)), '-o', **fom_params)
    ax.set_ylim([
        fom[0][1] / 2,
        fom[0][1] * 2,
    ])
    ax.legend(loc=0)

    fname1 = 'stdnu'
    data = np.column_stack((rom.nbs, rom.nus_sds))
    output = os.path.join(sub_dir, fname1)
    if rom.info['method'] == 'l-rom':
        output += '_' + rom.info['perc']
    elif rom.info['method'] == 'l-rom-df':
        output += '_' + rom.info['fwidth']
    output += '.csv'
    np.savetxt(output, data, delimiter=',', header='N, stdnu', comments="")
    output = os.path.join(sub_dir, 'stdnu.png')
    fig.savefig(output)
    plt.close(fig)

    rom_params = {'c': 'b', 'marker': 'o'}
    rom_params['label'] = rom.info['method'].upper()
    xlabel = r'$N$'

    fig, ax = plt.subplots(1, squeeze=True, tight_layout=True)
    ax.set(xlabel=xlabel, title='Relative Error in Mean Nu')
    ax.semilogy(rom.nbs, rom.mnuserr, **rom_params)
    ylim_exp = math.ceil(math.log10(min(rom.mnuserr))) - 1
    ax.set_ylim([10**ylim_exp, 1e0])
    ax.legend(loc=0)

    fname1 = 'mnu_err'
    data = np.column_stack((rom.nbs, rom.mnuserr))
    output = os.path.join(sub_dir, fname1)
    if rom.info['method'] == 'l-rom':
        output += '_' + rom.info['perc']
    elif rom.info['method'] == 'l-rom-df':
        output += '_' + rom.info['fwidth']
    output += '.csv'
    np.savetxt(output, data, delimiter=',', header='N, mnuserr', comments="")
    output = os.path.join(sub_dir, 'mnuserr.png')
    fig.savefig(output)
    plt.close(fig)

    rom_params = {'c': 'b', 'marker': 'o'}
    rom_params['label'] = rom.info['method'].upper()
    xlabel = r'$N$'

    fig, ax = plt.subplots(1, squeeze=True, tight_layout=True)
    ax.set(xlabel=xlabel, title='Relative Error in Std(Nu)')
    ax.semilogy(rom.nbs, rom.stdnuserr, **rom_params)
    ax.legend(loc=0)

    fname1 = 'stdnuerr'
    data = np.column_stack((rom.nbs, rom.stdnuserr))
    output = os.path.join(sub_dir, fname1)
    if rom.info['method'] == 'l-rom':
        output += '_' + rom.info['perc']
    elif rom.info['method'] == 'l-rom-df':
        output += '_' + rom.info['fwidth']
    output += '.csv'
    np.savetxt(output, data, delimiter=',', header='N, stdnuerr', comments="")
    output = os.path.join(sub_dir, 'stdnuerr.png')
    fig.savefig(output)
    plt.close(fig)
Exemple #4
0
def plt_coef_in_t(rom, nb, tdir):
    import numpy as np
    import matplotlib.pyplot as plt
    import sys
    from myplot import plt_romcoef_in_t, plt_snapcoef_in_t, \
    plt_snap_minmax, plt_mean_in_t, add_mean_in_t, add_std_in_t, plt_sample_mean_var
    sys.path.append('/Users/bigticket0501/Developer/PyMOR/postprocessing/')
    from snapshot import Snapshot
    import os

    setup_old.style(1)
    setup_old.text()

    field = rom.field
    sub_dir = os.path.join(tdir, 'rom' + field + '_' + str(nb))
    checkdir(sub_dir)

    # Create snapshot class
    # Need to modify the ops_path so that it does not depends on the position
    ops_path = '../ops/'
    snap = Snapshot(ops_path, field)
    snap.coef(rom.info['K'])
    ds = (rom.info['Tf'] - rom.info['T0'] + 1) / rom.info['K']
    snap.outputs['t'] = np.linspace(rom.info['T0'] - 1 + ds, rom.info['Tf'],
                                    rom.info['K'])
    umax, umin = snap.extrema()
    snap.mean()
    snap.var()

    K = rom.info['K']
    T0 = rom.info['T0']
    J0 = rom.info['J0']
    print(f'Information K: {K}, N: {nb}, T0: {T0}, J0: {J0}')

    # Plot rom coefficient
    if nb == 1:
        fig, ax = plt.subplots(1, squeeze=True, tight_layout=True)
        plt_romcoef_in_t(ax, 0, T0, rom)
        plt_snapcoef_in_t(ax, 0, T0, snap)
        plt_snap_minmax(ax, 0, T0, snap)
        add_mean_in_t(ax, 0, T0, snap, rom)
        add_std_in_t(ax, 0, T0, snap, rom)
        ax.legend(loc='upper left',
                  bbox_to_anchor=(0.0, 1.11),
                  ncol=4,
                  borderaxespad=0,
                  frameon=False)
    else:
        N_list = [0, int(nb / 2) - 1, nb - 4]
        # Number of coefficients you want
        for N0 in N_list:
            num_coef_show = 4
            num_coef_show = min(num_coef_show, nb)
            fig, axs = plt.subplots(num_coef_show,
                                    sharex=True,
                                    squeeze=True,
                                    tight_layout=True)
            for n in range(num_coef_show):
                plt_romcoef_in_t(axs[n], n + N0, T0, rom)
                plt_snapcoef_in_t(axs[n], n + N0, T0, snap)
                plt_snap_minmax(axs[n], n + N0, T0, snap)
                add_mean_in_t(axs[n], n + N0, T0, snap, rom)
                add_std_in_t(axs[n], n + N0, T0, snap, rom)
                if n == 0:
                    ax = axs[n]
            ax.legend(loc='upper left',
                      bbox_to_anchor=(0.0, 1.51),
                      ncol=4,
                      borderaxespad=0,
                      frameon=False)
            if rom.info['method'] == 'cp-rom':
                print(rom.fnames['rom' + field])
                s1 = 'rom' + field + '_N' + str(nb) + '_' + str(N0) + '.png'
            else:
                s1 = 'rom' + field + '_N' + str(nb) + '_' + str(N0) + '.png'
            output = os.path.join(sub_dir, s1)
            fig.savefig(output)

    fig = plt_sample_mean_var(rom, snap, nb)
    output = os.path.join(sub_dir,
                          field + 'a_' + field + 'v_N' + str(nb) + '.png')
    fig.savefig(output)
Exemple #5
0
def plt_rom_norm_w_N(rom, tdir):
    import numpy as np
    import matplotlib.pyplot as plt
    import os

    setup_old.style(1)
    setup_old.text()

    # Create subdirectory
    sub_dir = os.path.join(tdir, 'rom_norm')
    checkdir(sub_dir)

    solver = rom.info['method'].upper()
    # Create title
    title = 'Norm of the predictied mean flow by ' + solver + ' at '
    anc_lb = ''
    for key, value in rom.info['parameters'].items():
        if key == 'theta':
            anc_lb += '\\' + str(key) + '^*_g=' + str(value)
        else:
            anc_lb += str(key) + '^*=' + str(value)

    # Data transform
    data = np.column_stack((rom.nbs, rom.rom_norm))
    data = data[data[:, 0].argsort()]
    # fix the h1 norm
    for j in range(data.shape[0]):
        if (rom.info['ifrom(1)']):
            idx1 = 1
            data[j,
                 idx1 + 2] = np.sqrt(data[j, idx1]**2 + data[j, idx1 + 1]**2)
        if (rom.info['ifrom(2)']):
            idx2 = 4
            data[j,
                 idx2 + 2] = np.sqrt(data[j, idx2]**2 + data[j, idx2 + 1]**2)
        if (rom.info['ifrom(1)'] and rom.info['ifrom(2)']):
            idx3 = 7
            data[j,
                 idx3 + 2] = np.sqrt(data[j, idx3]**2 + data[j, idx3 + 1]**2)

    if (rom.info['ifrom(1)']):
        fig, ax = plt.subplots(1, tight_layout=True)
        ax.set(xlabel=r'$N$',
               ylabel=r'$\|\tilde{u}\|_{*}$',
               xlim=[0, max(rom.nbs)],
               title=title + '$' + anc_lb + '$')
        ax.plot(data[:, 0], data[:, idx1], 'b-o', mfc="None", label=r'$H^1_0$')
        ax.plot(data[:, 0],
                data[:, idx1 + 1],
                'r-o',
                mfc="None",
                label=r'$L^2$')
        ax.plot(data[:, 0],
                data[:, idx1 + 2],
                'k-o',
                mfc="None",
                label=r'$H^1$')
        ax.legend(loc=0)
        fname1 = 'rom_u_norm'
        fname2 = 'N_list'
        fname3 = 'rom_u_h10'
        fname4 = 'rom_u_l2'
        fname5 = 'rom_u_h1'
        for key, value in rom.info['parameters'].items():
            fname1 += '_' + str(key) + '_' + str(value)
            fname2 += '_' + str(key) + '_' + str(value)
            fname3 += '_' + str(key) + '_' + str(value)
            fname4 += '_' + str(key) + '_' + str(value)
            fname5 += '_' + str(key) + '_' + str(value)

        fname2 += '.dat'
        fname3 += '.dat'
        fname4 += '.dat'
        fname5 += '.dat'
        output = os.path.join(sub_dir, fname1)
        fig.savefig(output)
        output = os.path.join(sub_dir, fname2)
        np.savetxt(output, data[:, 0])
        output = os.path.join(sub_dir, fname3)
        np.savetxt(output, data[:, idx1])
        output = os.path.join(sub_dir, fname4)
        np.savetxt(output, data[:, idx1 + 1])
        output = os.path.join(sub_dir, fname5)
        np.savetxt(output, data[:, idx1 + 2])

    if (rom.info['ifrom(2)']):
        fig, ax = plt.subplots(1, tight_layout=True)
        ax.set(ylabel=r'$\||T\|_{*}$', xlabel=r'$N$', title=title)
        ax.plot(data[:, 0], data[:, idx2], 'b-o', mfc="None", label=r'$H^1_0$')
        ax.plot(data[:, 0],
                data[:, idx2 + 1],
                'r-o',
                mfc="None",
                label=r'$L^2$')
        ax.plot(data[:, 0],
                data[:, idx2 + 2],
                'k-o',
                mfc="None",
                label=r'$H^1$')
        ax.legend(loc=0)
        fname1 = 'rom_T_norm'
        fname2 = 'N_list'
        fname3 = 'rom_T_h10'
        fname4 = 'rom_T_l2'
        fname5 = 'rom_T_h1'
        for key, value in rom.info['parameters'].items():
            fname1 += '_' + str(key) + '_' + str(value)
            fname2 += '_' + str(key) + '_' + str(value)
            fname3 += '_' + str(key) + '_' + str(value)
            fname4 += '_' + str(key) + '_' + str(value)
            fname5 += '_' + str(key) + '_' + str(value)

        fname2 += '.dat'
        fname3 += '.dat'
        fname4 += '.dat'
        fname5 += '.dat'
        output = os.path.join(sub_dir, fname1)
        fig.savefig(output)
        output = os.path.join(sub_dir, fname2)
        np.savetxt(output, data[:, 0])
        output = os.path.join(sub_dir, fname3)
        np.savetxt(output, data[:, idx2])
        output = os.path.join(sub_dir, fname4)
        np.savetxt(output, data[:, idx2 + 1])
        output = os.path.join(sub_dir, fname5)
        np.savetxt(output, data[:, idx2 + 2])

    if (rom.info['ifrom(1)'] and rom.info['ifrom(2)']):
        fig, ax = plt.subplots(1, tight_layout=True)
        ax.set(ylabel=r'$\||(u, T)\|_{*}$', xlabel=r'$N$', title=title)
        ax.plot(data[:, 0], data[:, idx3], 'b-o', mfc="None", label=r'$H^1_0$')
        ax.plot(data[:, 0],
                data[:, idx3 + 1],
                'r-o',
                mfc="None",
                label=r'$L^2$')
        ax.plot(data[:, 0],
                data[:, idx3 + 2],
                'k-o',
                mfc="None",
                label=r'$H^1$')
        ax.legend(loc=0)
        fname1 = 'rom_norm'
        fname2 = 'N_list'
        fname3 = 'rom_h10'
        fname4 = 'rom_l2'
        fname5 = 'rom_h1'
        for key, value in rom.info['parameters'].items():
            fname1 += '_' + str(key) + '_' + str(value)
            fname2 += '_' + str(key) + '_' + str(value)
            fname3 += '_' + str(key) + '_' + str(value)
            fname4 += '_' + str(key) + '_' + str(value)
            fname5 += '_' + str(key) + '_' + str(value)

        fname2 += '.dat'
        fname3 += '.dat'
        fname4 += '.dat'
        fname5 += '.dat'

        output = os.path.join(sub_dir, fname1)
        fig.savefig(output)
        output = os.path.join(sub_dir, fname2)
        np.savetxt(output, data[:, 0])
        output = os.path.join(sub_dir, fname3)
        np.savetxt(output, data[:, idx3])
        output = os.path.join(sub_dir, fname4)
        np.savetxt(output, data[:, idx3 + 1])
        output = os.path.join(sub_dir, fname5)
        np.savetxt(output, data[:, idx3 + 2])
    return