import os
import sg_utils as utils
import coco_voc
import shutil

# Make directories
for i in xrange(60):
  utils.mkdir_if_missing(os.path.join('..', 'data', 'images', '{:02d}'.format(i)))

# Copy files over
sets = ['train', 'val', 'test']
for set_ in sets:
  imdb = coco_voc.coco_voc(set_)
  for i in xrange(imdb.num_images):
    in_file = os.path.join('../data', set_ + '2014', \
      'COCO_{}2014_{:012d}.jpg'.format(set_, imdb.image_index[i])); 
    out_file = imdb.image_path_at(i)
    # print in_file, out_file
    shutil.copyfile(in_file, out_file)
    utils.tic_toc_print(1, ' Copying images [{}]: {:06d} / {:06d}\n'.format(set_, i, imdb.num_images));
Exemple #2
0
import os
import sg_utils as utils
import coco_voc
import shutil

# Make directories
for i in xrange(60):
  utils.mkdir_if_missing(os.path.join('data', 'images', '{:02d}'.format(i)))

# Copy files over
sets = ['train', 'val', 'test']
for set_ in sets:
  imdb = coco_voc.coco_voc(set_)
  for i in xrange(imdb.num_images):
    in_file = os.path.join(set_ + '2014', \
      'COCO_{}2014_{:012d}.jpg'.format(set_, imdb.image_index[i])); 
    out_file = imdb.image_path_at(i)
    # print in_file, out_file
    shutil.copyfile(in_file, out_file)
    utils.tic_toc_print(1, ' Copying images [{}]: {:06d} / {:06d}\n'.format(set_, i, imdb.num_images));
Exemple #3
0
def mainTest():
##DO NOT CHANGE
  numReferencesToEval = 5;
  minWords = 3;
  precThresh = 0.5;
#####
  testSetName='coco';
  testSetSplit = 'valid2';

  imdb = meu.get_imdb(testSetName, testSetSplit);
  has_gpu = False;

  if has_gpu:
    gpuId = 1
    caffe.set_mode_gpu(); caffe.set_device(gpuId);
  else:
    caffe.set_mode_cpu();
    print 'using CPU'
  #list of paths where we keep our caffe models
  caffeModelPaths = ['./experiments'];
  #output directory to write results
  #make sure it has >2GB free space
  detOutPath = './det-output';
  #list of models we want to evaluate
  #make sure they have an entry in the function modelVocabConfig() in data_model_utils.py
  solverProtoList = [
  'vgg/mil_finetune_solver.prototxt',\
  ]

  #iterations to evaluate
  # evalIters = [80000, 160000, 240000, 320000, 400000];
  evalIters = [320000]
  for i in range(len(solverProtoList)):
    solverProtoName = solverProtoList[i];
    vocab = meu.get_model_vocab(solverProtoName);
    infType = meu.get_model_inference_type(solverProtoList[i]);
    baseImageSize = meu.get_model_image_size(solverProtoList[i]);
    gtKeyedLabel = None

    for caffeModelPath in caffeModelPaths:
      solverProtoPath = os.path.join(caffeModelPath, solverProtoName);
      auxFiles = caffe_utils.get_model_aux_files_from_solver(\
            solverProtoPath = solverProtoPath, caffeModelPath=caffeModelPath);
      if auxFiles == None:
        print 'could not find solver in %s'%(solverProtoPath)
        continue;
      if len(auxFiles['snapshotFiles']) == 0:
        print 'no snapshots found ', solverProtoPath
        continue;
      expSubDirBase = auxFiles['expSubDirBase'];
      expName = getExpNameFromSolverProtoName(solverProtoPath)

      expDirBase = os.path.join(expSubDirBase, expName)
      modelIterNums = [ caffe_utils.get_iter_from_model_file(snapFilePath)\
                       for snapFilePath in auxFiles['snapshotFiles'] ];
      runInds = im_utils.argsort(modelIterNums, reverse=True);
      for ci, s in enumerate(runInds):
        snapFilePath = auxFiles['snapshotFiles'][s];
        modelIterNumber =  caffe_utils.get_iter_from_model_file(snapFilePath);
        if modelIterNumber not in evalIters:
          continue;
        print solverProtoPath, modelIterNumber
        modelOuts = getModelOutputPaths(detOutPath, expDirBase,\
                expName, snapFilePath , testSetName, testSetSplit,\
                numReferencesToEval = numReferencesToEval,
                minWords = minWords, precThresh = precThresh, ext='.h5');
        detectionFile = modelOuts['detectionFile'];
        evalFile = modelOuts['evalFile']; #evaluate as in MILVC
        evalNoRefFile = evalFile.replace('.h5','_noref.h5'); #evaluate using standard definition of AP
        evalCocoManualGtFile = evalFile.replace('.h5','_cocomanualgt.h5'); #evaluate using COCO fully-labeled ground truth
        bdir = os.path.split(detectionFile)[0];
        sg_utils.mkdir_if_missing(bdir);

        if not lock_utils.is_locked(detectionFile):
          model = loadModel(auxFiles['deployProtoPath'], snapFilePath, vocab, baseImageSize, infType);
          testModelBatch(imdb, model, detectionFile);
          lock_utils.unlock(detectionFile);
        else:
          print '%s locked'%(detectionFile)
        model = {};
        model['inf_type'] = infType;
        model['vocab'] = vocab;
        gtLabel = getLabels(imdb, model, solverProtoName);

        #evaluate as in MILVC: using "weighted" version of AP; requires multiple gt references per image
        #e.g. in COCO captions we have 5 captions per image. So we for each "visual concept" we have 5 gt references
        if imdb._name == 'coco' and \
          lock_utils.file_ready_to_read(detectionFile) and (not lock_utils.is_locked(evalFile)):
          model = {};
          model['inf_type'] = infType;
          model['vocab'] = vocab;
          if infType=='MILNoise':
            evalModelBatch(imdb, model, gtLabel, \
              numReferencesToEval, detectionFile, evalFile, evalNoiseKey='noisy_comb_noimage');
          else:
            evalModelBatch(imdb, model, gtLabel,\
             numReferencesToEval, detectionFile, evalFile);
            lock_utils.unlock(evalFile);

        #evaluate using standard AP definition. Does not need multiple references. Hence the name "NoRef"
        if imdb._name == 'coco' and \
          lock_utils.file_ready_to_read(detectionFile) and (not lock_utils.is_locked(evalNoRefFile)):
          model = {};
          model['inf_type'] = infType;
          model['vocab'] = vocab;
          if infType=='MILNoise':
            evalModelBatchNoRef(imdb, model, gtLabel,\
             numReferencesToEval, detectionFile, evalNoRefFile, evalNoiseKey='noisy_comb_noimage');
          else:
            evalModelBatchNoRef(imdb, model, gtLabel,\
             numReferencesToEval, detectionFile, evalNoRefFile);
            lock_utils.unlock(evalNoRefFile);

        #evaluate using fully labeled ground truth from COCO 80 detection classes.
        #we have a manual mapping defined from COCO 80 classes to the 1000 visual concepts
        if imdb._name == 'coco' and \
          lock_utils.file_ready_to_read(detectionFile)\
           and (not lock_utils.is_locked(evalCocoManualGtFile)):
          model = {};
          model['inf_type'] = infType;
          model['vocab'] = vocab;
          cocoFile = './data/coco_instancesGT_eval_%s.h5'%(testSetSplit)
          dt = sg_utils.load(detectionFile);
          mil_prob = dt['mil_prob'];
          evalModelBatchOnClassificationCOCOManual(imdb, model,\
           mil_prob, evalCocoManualGtFile, cocoFile)
          if infType=='MILNoise':
            mil_prob = dt['noisy_comb_noimage'];
            evalCocoManualGtNoiseFile = evalCocoManualGtFile.replace('.h5','_noise.h5')
            evalModelBatchOnClassificationCOCOManual(imdb, model,\
             mil_prob, evalCocoManualGtNoiseFile, cocoFile)
          lock_utils.unlock(evalCocoManualGtFile);

        if imdb.name == 'coco' and lock_utils.file_ready_to_read(evalFile):
          print '=='*20;
          print 'AP (as computed in MILVC)'
          N_WORDS = len(vocab['words'])
          model = {};
          model['inf_type'] = infType;
          model['vocab'] = vocab;
          cap_eval_utils.print_benchmark_latex(evalFile, vocab = vocab);
          evalFile = evalFile.replace('.h5','_noise.h5');
          if os.path.isfile(evalFile):
            print 'noise'
            cap_eval_utils.print_benchmark_latex(evalFile, vocab = vocab);

        if imdb.name == 'coco' and lock_utils.file_ready_to_read(evalNoRefFile):
          print '=='*20;
          print 'AP (as computed in PASCAL VOC)'
          N_WORDS = len(vocab['words'])
          model = {};
          model['inf_type'] = infType;
          model['vocab'] = vocab;
          cap_eval_utils.print_benchmark_latex(evalNoRefFile, vocab = vocab);
          evalNoRefFile = evalNoRefFile.replace('.h5','_noise.h5');
          if os.path.isfile(evalNoRefFile):
            print 'noise'
            cap_eval_utils.print_benchmark_latex(evalNoRefFile, vocab = vocab);

        if imdb.name == 'coco' and lock_utils.file_ready_to_read(evalCocoManualGtFile):
          dt = sg_utils.load(evalCocoManualGtFile);
          dtMeta = sg_utils.load(evalCocoManualGtFile.replace('.h5','_meta.pkl'))
          classesFound = dtMeta['classesFound']
          srtInds = im_utils.argsort(classesFound);
          accAP = np.zeros((1),dtype=np.float32);
          for ind in srtInds:
            accAP += dt['ap'][ind]
          print 'evaluate on fully-labeled GT:',
          print 'AP %.2f; classes %d'%(100*accAP/len(classesFound), len(classesFound))
          evalCocoManualGtNoiseFile = evalCocoManualGtFile.replace('.h5','_noise.h5')
          if os.path.isfile(evalCocoManualGtNoiseFile):
            dt = sg_utils.load(evalCocoManualGtNoiseFile);
            print '--noise--'
            accAP = np.zeros((1),dtype=np.float32);
            for ind in srtInds:
              print '{:.2f} '.format(100*dt['ap'][ind]),
              accAP += dt['ap'][ind];
            print ''
            print '%.2f; %d'%(100*accAP/len(classesFound), len(classesFound))
          print '--'*10
Exemple #4
0
        print 'Writing labels to {}'.format(split_file)
        with open(split_file, 'wt') as f:
          for j in xrange(imdb[i].num_images):
            ind = imdb[i].image_index[j]
            ind_str = '{:02d}/{:d}'.format(int(math.floor(ind)/1e4), ind)
            f.write('{}\n'.format(ind_str))

      # Print the command to start training

  if args.task == 'test_model':
    imdb = coco_voc.coco_voc(args.test_set)
    mean = np.array([[[ 103.939, 116.779, 123.68]]]);
    base_image_size = 565;
    model = load_model(args.prototxt_deploy, args.model, base_image_size, mean, vocab)
    out_dir = args.model + '_output'
    utils.mkdir_if_missing(out_dir)
    detection_file = os.path.join(out_dir, imdb.name + '_detections.pkl')
    
    test_model(imdb, model, detection_file = detection_file)

  if args.task == 'eval_model':
    imdb = coco_voc.coco_voc(args.test_set)
    gt_label = preprocess.get_vocab_counts(imdb.image_index, \
        imdb.coco_caption_data, 5, vocab)
    out_dir = args.model + '_output'
    detection_file = os.path.join(out_dir, imdb.name + '_detections.pkl')
    eval_file = os.path.join(out_dir, imdb.name + '_eval.pkl')
    benchmark(imdb, vocab, gt_label, 5, detection_file, eval_file = eval_file)

  if args.task == 'output_words':
    out_dir = args.model + '_output'
def mainTest():
    ##DO NOT CHANGE
    numReferencesToEval = 5
    minWords = 3
    precThresh = 0.5
    #####
    testSetName = 'coco'
    testSetSplit = 'valid2'

    imdb = meu.get_imdb(testSetName, testSetSplit)
    has_gpu = False

    if has_gpu:
        gpuId = 1
        caffe.set_mode_gpu()
        caffe.set_device(gpuId)
    else:
        caffe.set_mode_cpu()
        print 'using CPU'
    #list of paths where we keep our caffe models
    caffeModelPaths = ['./experiments']
    #output directory to write results
    #make sure it has >2GB free space
    detOutPath = './det-output'
    #list of models we want to evaluate
    #make sure they have an entry in the function modelVocabConfig() in data_model_utils.py
    solverProtoList = [
    'vgg/mil_finetune_solver.prototxt',\
    ]

    #iterations to evaluate
    # evalIters = [80000, 160000, 240000, 320000, 400000];
    evalIters = [320000]
    for i in range(len(solverProtoList)):
        solverProtoName = solverProtoList[i]
        vocab = meu.get_model_vocab(solverProtoName)
        infType = meu.get_model_inference_type(solverProtoList[i])
        baseImageSize = meu.get_model_image_size(solverProtoList[i])
        gtKeyedLabel = None

        for caffeModelPath in caffeModelPaths:
            solverProtoPath = os.path.join(caffeModelPath, solverProtoName)
            auxFiles = caffe_utils.get_model_aux_files_from_solver(\
                  solverProtoPath = solverProtoPath, caffeModelPath=caffeModelPath)
            if auxFiles == None:
                print 'could not find solver in %s' % (solverProtoPath)
                continue
            if len(auxFiles['snapshotFiles']) == 0:
                print 'no snapshots found ', solverProtoPath
                continue
            expSubDirBase = auxFiles['expSubDirBase']
            expName = getExpNameFromSolverProtoName(solverProtoPath)

            expDirBase = os.path.join(expSubDirBase, expName)
            modelIterNums = [ caffe_utils.get_iter_from_model_file(snapFilePath)\
                             for snapFilePath in auxFiles['snapshotFiles'] ]
            runInds = im_utils.argsort(modelIterNums, reverse=True)
            for ci, s in enumerate(runInds):
                snapFilePath = auxFiles['snapshotFiles'][s]
                modelIterNumber = caffe_utils.get_iter_from_model_file(
                    snapFilePath)
                if modelIterNumber not in evalIters:
                    continue
                print solverProtoPath, modelIterNumber
                modelOuts = getModelOutputPaths(detOutPath, expDirBase,\
                        expName, snapFilePath , testSetName, testSetSplit,\
                        numReferencesToEval = numReferencesToEval,
                        minWords = minWords, precThresh = precThresh, ext='.h5')
                detectionFile = modelOuts['detectionFile']
                evalFile = modelOuts['evalFile']
                #evaluate as in MILVC
                evalNoRefFile = evalFile.replace('.h5', '_noref.h5')
                #evaluate using standard definition of AP
                evalCocoManualGtFile = evalFile.replace(
                    '.h5', '_cocomanualgt.h5')
                #evaluate using COCO fully-labeled ground truth
                bdir = os.path.split(detectionFile)[0]
                sg_utils.mkdir_if_missing(bdir)

                if not lock_utils.is_locked(detectionFile):
                    model = loadModel(auxFiles['deployProtoPath'],
                                      snapFilePath, vocab, baseImageSize,
                                      infType)
                    testModelBatch(imdb, model, detectionFile)
                    lock_utils.unlock(detectionFile)
                else:
                    print '%s locked' % (detectionFile)
                model = {}
                model['inf_type'] = infType
                model['vocab'] = vocab
                gtLabel = getLabels(imdb, model, solverProtoName)

                #evaluate as in MILVC: using "weighted" version of AP; requires multiple gt references per image
                #e.g. in COCO captions we have 5 captions per image. So we for each "visual concept" we have 5 gt references
                if imdb._name == 'coco' and \
                  lock_utils.file_ready_to_read(detectionFile) and (not lock_utils.is_locked(evalFile)):
                    model = {}
                    model['inf_type'] = infType
                    model['vocab'] = vocab
                    if infType == 'MILNoise':
                        evalModelBatch(imdb, model, gtLabel, \
                          numReferencesToEval, detectionFile, evalFile, evalNoiseKey='noisy_comb_noimage')
                    else:
                        evalModelBatch(imdb, model, gtLabel,\
                         numReferencesToEval, detectionFile, evalFile)
                        lock_utils.unlock(evalFile)

                #evaluate using standard AP definition. Does not need multiple references. Hence the name "NoRef"
                if imdb._name == 'coco' and \
                  lock_utils.file_ready_to_read(detectionFile) and (not lock_utils.is_locked(evalNoRefFile)):
                    model = {}
                    model['inf_type'] = infType
                    model['vocab'] = vocab
                    if infType == 'MILNoise':
                        evalModelBatchNoRef(imdb, model, gtLabel,\
                         numReferencesToEval, detectionFile, evalNoRefFile, evalNoiseKey='noisy_comb_noimage')
                    else:
                        evalModelBatchNoRef(imdb, model, gtLabel,\
                         numReferencesToEval, detectionFile, evalNoRefFile)
                        lock_utils.unlock(evalNoRefFile)

                #evaluate using fully labeled ground truth from COCO 80 detection classes.
                #we have a manual mapping defined from COCO 80 classes to the 1000 visual concepts
                if imdb._name == 'coco' and \
                  lock_utils.file_ready_to_read(detectionFile)\
                   and (not lock_utils.is_locked(evalCocoManualGtFile)):
                    model = {}
                    model['inf_type'] = infType
                    model['vocab'] = vocab
                    cocoFile = './data/coco_instancesGT_eval_%s.h5' % (
                        testSetSplit)
                    dt = sg_utils.load(detectionFile)
                    mil_prob = dt['mil_prob']
                    evalModelBatchOnClassificationCOCOManual(imdb, model,\
                     mil_prob, evalCocoManualGtFile, cocoFile)
                    if infType == 'MILNoise':
                        mil_prob = dt['noisy_comb_noimage']
                        evalCocoManualGtNoiseFile = evalCocoManualGtFile.replace(
                            '.h5', '_noise.h5')
                        evalModelBatchOnClassificationCOCOManual(imdb, model,\
                         mil_prob, evalCocoManualGtNoiseFile, cocoFile)
                    lock_utils.unlock(evalCocoManualGtFile)

                if imdb.name == 'coco' and lock_utils.file_ready_to_read(
                        evalFile):
                    print '==' * 20
                    print 'AP (as computed in MILVC)'
                    N_WORDS = len(vocab['words'])
                    model = {}
                    model['inf_type'] = infType
                    model['vocab'] = vocab
                    cap_eval_utils.print_benchmark_latex(evalFile, vocab=vocab)
                    evalFile = evalFile.replace('.h5', '_noise.h5')
                    if os.path.isfile(evalFile):
                        print 'noise'
                        cap_eval_utils.print_benchmark_latex(evalFile,
                                                             vocab=vocab)

                if imdb.name == 'coco' and lock_utils.file_ready_to_read(
                        evalNoRefFile):
                    print '==' * 20
                    print 'AP (as computed in PASCAL VOC)'
                    N_WORDS = len(vocab['words'])
                    model = {}
                    model['inf_type'] = infType
                    model['vocab'] = vocab
                    cap_eval_utils.print_benchmark_latex(evalNoRefFile,
                                                         vocab=vocab)
                    evalNoRefFile = evalNoRefFile.replace('.h5', '_noise.h5')
                    if os.path.isfile(evalNoRefFile):
                        print 'noise'
                        cap_eval_utils.print_benchmark_latex(evalNoRefFile,
                                                             vocab=vocab)

                if imdb.name == 'coco' and lock_utils.file_ready_to_read(
                        evalCocoManualGtFile):
                    dt = sg_utils.load(evalCocoManualGtFile)
                    dtMeta = sg_utils.load(
                        evalCocoManualGtFile.replace('.h5', '_meta.pkl'))
                    classesFound = dtMeta['classesFound']
                    srtInds = im_utils.argsort(classesFound)
                    accAP = np.zeros((1), dtype=np.float32)
                    for ind in srtInds:
                        accAP += dt['ap'][ind]
                    print 'evaluate on fully-labeled GT:',
                    print 'AP %.2f; classes %d' % (
                        100 * accAP / len(classesFound), len(classesFound))
                    evalCocoManualGtNoiseFile = evalCocoManualGtFile.replace(
                        '.h5', '_noise.h5')
                    if os.path.isfile(evalCocoManualGtNoiseFile):
                        dt = sg_utils.load(evalCocoManualGtNoiseFile)
                        print '--noise--'
                        accAP = np.zeros((1), dtype=np.float32)
                        for ind in srtInds:
                            print '{:.2f} '.format(100 * dt['ap'][ind]),
                            accAP += dt['ap'][ind]
                        print ''
                        print '%.2f; %d' % (100 * accAP / len(classesFound),
                                            len(classesFound))
                    print '--' * 10