Exemple #1
0
 def filter(self):
     """
     The filter method is an important method which allows to summarize the local explainability
     by using the user defined mask_params parameters which correspond to its use case.
     """
     mask = [init_mask(self.summary['contrib_sorted'], True)]
     if self.mask_params["features_to_hide"] is not None:
         mask.append(
             hide_contributions(self.summary['var_dict'],
                                features_list=self.check_features_name(
                                    self.mask_params["features_to_hide"])))
     if self.mask_params["threshold"] is not None:
         mask.append(
             cap_contributions(self.summary['contrib_sorted'],
                               threshold=self.mask_params["threshold"]))
     if self.mask_params["positive"] is not None:
         mask.append(
             sign_contributions(self.summary['contrib_sorted'],
                                positive=self.mask_params["positive"]))
     self.mask = combine_masks(mask)
     if self.mask_params["max_contrib"] is not None:
         self.mask = cutoff_contributions(mask=self.mask,
                                          k=self.mask_params["max_contrib"])
     self.masked_contributions = compute_masked_contributions(
         self.summary['contrib_sorted'], self.mask)
Exemple #2
0
    def combine_masks(self, masks):
        """
        Combine a list of masks with the AND operator.

        Parameters
        ----------
        masks : list
            List of boolean pandas.DataFrames.

        Returns
        -------
        pd.Dataframe
            Combination of all masks.
        """
        return combine_masks(masks)
Exemple #3
0
 def test_combine_masks_2(self):
     """
     Unit test combine masks 2
     """
     df1 = pd.DataFrame(
         [[True, False, True], [True, True, True], [False, False, False]],
         columns=['col1', 'col2', 'col3'])
     df2 = pd.DataFrame(
         [[False, False, True], [True, False, True], [True, False, False]],
         columns=['contrib_1', 'contrib_2', 'contrib_3'])
     output = combine_masks([df1, df2])
     expected_output = pd.DataFrame(
         [[False, False, True], [True, False, True], [False, False, False]],
         columns=['contrib_1', 'contrib_2', 'contrib_3'])
     pd.testing.assert_frame_equal(output, expected_output)