Exemple #1
0
 def filter(self):
     """
     The filter method is an important method which allows to summarize the local explainability
     by using the user defined mask_params parameters which correspond to its use case.
     """
     mask = [init_mask(self.summary['contrib_sorted'], True)]
     if self.mask_params["features_to_hide"] is not None:
         mask.append(
             hide_contributions(self.summary['var_dict'],
                                features_list=self.check_features_name(
                                    self.mask_params["features_to_hide"])))
     if self.mask_params["threshold"] is not None:
         mask.append(
             cap_contributions(self.summary['contrib_sorted'],
                               threshold=self.mask_params["threshold"]))
     if self.mask_params["positive"] is not None:
         mask.append(
             sign_contributions(self.summary['contrib_sorted'],
                                positive=self.mask_params["positive"]))
     self.mask = combine_masks(mask)
     if self.mask_params["max_contrib"] is not None:
         self.mask = cutoff_contributions(mask=self.mask,
                                          k=self.mask_params["max_contrib"])
     self.masked_contributions = compute_masked_contributions(
         self.summary['contrib_sorted'], self.mask)
Exemple #2
0
 def test_init_mask(self):
     """
     test of initialization of mask
     """
     column_name = ['col1', 'col2']
     s_ord = pd.DataFrame([[0.1, 0.43], [-0.78, 0.002], [0.62, -0.008]],
                          columns=column_name)
     expected = pd.DataFrame([[True, True], [True, True], [True, True]],
                             columns=column_name)
     output = init_mask(s_ord)
     assert output.equals(expected)
Exemple #3
0
    def init_mask(self, s_contrib, value=True):
        """
        Initialize a True mask for the dataset.

        Parameters
        ----------
        s_contrib: pd.DataFrame
            Matrix with both positive and negative values
        value: bool
            Value used for initialize the mask

        Returns
        -------
        pd.Dataframe
            mask initialized
        """
        return init_mask(s_contrib, value)