def save(self, path): """ Save method allows users to save SmartPredictor object on disk using a pickle file. Save method can be useful: you don't have to recompile to display results later. Load_smartpredictor method allow to load your SmartPredictor object saved. (See example below) Parameters ---------- path : str File path to store the pickle file Example -------- >>> predictor.save('path_to_pkl/predictor.pkl') >>> from shapash.utils.load_smartpredictor import load_smartpredictor >>> predictor_load = load_smartpredictor('path_to_pkl/predictor.pkl') """ dict_to_save = {} for att in self.__dict__.keys(): if (isinstance(getattr(self, att), (list, dict, pd.DataFrame, pd.Series, type(None))) or att == "model" or att == "explainer" or att == "preprocessing") and not att == "data": dict_to_save.update({att: getattr(self, att)}) save_pickle(dict_to_save, path)
def save(self, path): """ Save method allows user to save SmartExplainer object on disk using a pickle file. Save method can be useful: you don't have to recompile to display results later Parameters ---------- path : str File path to store the pickle file Example -------- >>> xpl.save('path_to_pkl/xpl.pkl') """ dict_to_save = {} for att in self.__dict__.keys(): if isinstance(getattr(self, att), (list, dict, pd.DataFrame, pd.Series, type(None), bool)) or att == "model": dict_to_save.update({att: getattr(self, att)}) save_pickle(dict_to_save, path)